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Abstract

A transversely kicked bunch will decohere due to,
among other things, chromatic and amplitude-dependent
tune shifts. The chromatic tune shift leads to correlation
between transverse and longitudinal phase space. Such a
correlation can be used for compressing synchrotron radia-
tion of the bunch with adequate optics. In this report, we re-
vise the decoherence calculation to derive the centroid and
second moments of a beam slice in a kicked bunch, tak-
ing into account chromatic and nonlinear decoherence, but
neglecting wakefield and radiation damping, etc. A sim-
ple formula for estimating slice bunch length (and potential
pulse compression ratio) is given for the ideal situation.

INTRODUCTION

At synchrotron radiation facilities, photon pulses much
shorter than the electron bunch length are desired for many
potential applications. To meet such a challenge, various
techniques have been proposed. The simplest technique
is to use a vertically kicked bunch [1]. After the kick, at
about half a synchrotron period, a vertically tilted bunch
will form due to chromatic decoherence. The photon pulse
emitted from such a tilted bunch inherits a strong longitu-
dinal and vertical correlation that can be exploited to slice
out a much shorter pulse with a slit or to compress the long
pulse into a short one with adequate optics. Decoherence
of a kicked bunch has been well studied (see, for example,
[2-5]), but the behavior of bunch slices has not been exam-
ined carefully. Here we give the detailed characteristics of
a beam slice in a kicked bunch, taking into account chro-
matic and nonlinear decoherence, but neglecting wakefield
and radiation damping, etc. We give the results in the nor-
mal coordinates at the kick location, which can be easily
transferred to the laboratory coordinates at the desired lo-
cation.

PHASE-SPACE DISTRIBUTION

For convenience we work with the normal coordinates
{x̄, p̄x, ȳ, p̄x, z, δ} and action-angle variables Jx,y , φx,y .
Assuming there are no transverse linear couplings at the
kicker and the radiation source, these coordinates can be
easily translated into the lab coordinates via

[
y
py

]
= A

[
ȳ
p̄y

]
, A =

[
1/

√
βy 0

αy/
√

βy

√
βy

]−1

, (1)
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where βy and αy are the vertical Twiss parameters at the
involved location. The same holds for the horizontal plane.

Before the kick, assuming a well-damped bunch, the
phase-space distribution reads

ρ =
1

(2π)3εxεyεz
e−

x̄2+p̄2
x

2εx e
−

ȳ2+p̄2
y

2εy e
− z2

2σ2
z
− δ2

2σ2
δ . (2)

Right after a vertical kick Δy ′, the vertical distribution is
changed to

ρy =
1

2πεy
e
− ȳ2+(p̄y−

√
βyΔy′)2

2εy

=
1

2πεy
e
−
[
Jy/εy+

√
2Jy/εy ky sin φy+k2

y/2
]
, (3)

where ky ≡
√

2ΔJy/εy = βy

σy
Δy′ is a dimensionless

quantity that measures the effective kick on the action ΔJy .
Without damping and excitation, each particle moves on
a circle in the phase space of normal coordinates, thus
the phase-space distribution evolves with a simple phase
shift. Let Δφy(n) be the betatron phase change accumu-
lated during n turns after the kick. The distribution at the
n-th turn can be obtained by replacing the phase φy to
Φy = φy − Δφy(n) in Eq. (3) above. The phase shift
is determined by the vertical tune

νy = ν0
y + ξyδ + ayJy + ayxJx + · · · , (4)

where ν0
y is the linear vertical tune, ξy is the chromatic-

ity, and ay and ayx are the tune-shift-with-amplitude coef-
ficients. Integrating over n turns gives the phase change

Δφy(n)
2π

= (ν0
y + ayJy + ayxJx)n− ξy

z − z0

ηC
. (5)

Here z0 is the particle’s initial longitudinal position when
the kick occurs, η is the slippage factor, and C is the cir-
cumference of the ring. The last term results from the in-
tegration

∫
ξyδ ds/C and the longitudinal equation of mo-

tion z′ = −ηδ. We see that the chromatic betatron phase
deviation is proportional to the particle’s longitudinal po-
sition. This is the key to generate the transverse and lon-
gitudinal correlation via chromatic decoherence. To fin-
ish the n-th turn distribution, z0 needs to be written as a
function of phase-space variables at the n-th turn, which
can be obtained from the longitudinal one-turn map as
z0 = cos(2πνsn) z − βz sin(2πνsn) δ, where νs is the
synchrotron tune and βz = σz/σδ is the longitudinal beta
function. If the location of observation is different from
the kick location, one can simply add the corresponding
phase advance, say ϕy , in Eq. (5). If there is horizontal
kick as well, a similar distribution holds. The tune-shift-
with-amplitude coefficients axy = ayx.
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CENTROID OF A BUNCH SLICE

First we calculate the centroid of a longitudinal slice at
position z, which is given by

〈ȳ〉z + i 〈p̄y〉z = 〈
√

2Jye
−iφy〉{x,px,y,py,δ}, (6)

where 〈· · ·〉z means phase-space average for the z slice and
〈· · ·〉{X} means average over the X variables. It is conve-
nient to carry out the integration in action-angle variables
and change the variable φx,y to Φx,y. Thus, except for the
normalization factor that will leave out the z distribution,
the slice centroid can be written as∫

dJx,ydΦx,ydδ
√

2Jye−i(Φy+Δφy)ρn(Jx,y, Φx,y, z, δ),

(7)
where ρn is the n-th turn distribution obtained above. This
integral factors into three parts. Introducing θy ≡ 2πayεyn
and θyx ≡ 2πayxεxn, the horizontal part yields
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The vertical part yields∫∫
dJydΦy ρy(Jy , Φy)

√
2Jye

−i(Φy+2πν0
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The longitudinal part yields (without the z distribution)
∫ ∞

−∞

dδ√
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e
− δ2
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δ ei
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= ei
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1
2 (
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Averaging over all slices gives the usual chromatic form
factor [2], with ηC/βz = 2πνs,

F1≡
∫ ∞

−∞

dz√
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e
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2σ2
z Eq. (10) = e−2(
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(11)
Combining Eqs. (8, 9, 10), we have the centroid of a longi-
tudinal slice at z as

〈ȳ〉z = ky
√
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where
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The horizontal centroid can be obtained by simply switch-
ing x and y.

Compared to the bunch centroid, the slice centroid has
a different chromatic form factor, and more interesting, an
extra phase factor that is proportional to the longitudinal
position of a slice. Clearly at half a synchrotron period af-
ter the kick, the slice betatron motion and its z-dependence
reaches maximum. By proper choice of the coefficient
(ξyσδ/νs) sin2(πνsn), the phase spread over the bunch can
be limited to the linear region of either the sine or cosine
function, thus a rather linear correlation between slice ver-
tical position/angle and longitudinal position can be ob-
tained, which can be used to compress photon pulses.

SIZE, EMITTANCE OF A BUNCH SLICE

The second moments can be worked out similarly. Re-
sults are given for the vertical plane. Switching x and y
gives the horizontal plane results. For a z slice, we obvi-
ously have

〈ȳ2〉z + 〈p̄2
y〉z = 〈2Jy〉z = 2εy(1 +

k2
y

2
), (14)

which is invariant since radiation effects are ignored. To
obtain the individual second moments, we calculate

〈(ȳ+i p̄y)2〉z = 〈ȳ2〉z−〈p̄2
y〉z+2i〈ȳp̄y〉z = 〈2Jye

−i2φy 〉z,
(15)

which has the following three factors. The horizontal factor
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The vertical factor∫∫
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The chromatic factor∫ ∞

−∞

dδ√
2πσδ

e
− δ2

2σ2
δ ei2
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Averaging over all slices again gives the usual chromatic
form factor F 4

1 . Combining Eqs. (16, 17, 18) gives
〈(ȳ + i p̄y)2〉z = −k2

yεyA2 exp(−iφ2), and together with
Eq. (14), after some algebra, we have the rms values of a
longitudinal slice at z as

σ2
ȳ = εy

{
1+

k2
y

2
[1−A2

1 +A2
1 cos(2φ1)−A2 cosφ2]

}
, (19)

σ2
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{
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y

2
[1−A2
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}
, (20)
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σ2
ȳp̄y
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y
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The rms slice emittance ε̃y =
√

σ2
ȳσ2

p̄y
− σ4

ȳp̄y
evolves as

the bunch decoheres according to
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2
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Note that εy is the initial vertical emittance. The quantities
A1, φ1 have been given before, and
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BUNCH LENGTH OF A VERTICAL SLICE

For the purpose of generating short photon pulses, it
is interesting to compute the bunch length of a vertical
slice at ȳ. Unfortunately, the integration needed for a ver-
tical slice appears much harder (if doable) since we can
not integrate over the angle variable anymore. Here we
limit our calculation to the simplest yet particularly inter-
esting case at half a synchrotron period, i.e., νsn = 1/2,
where the y-z correlation reaches maximum. Furthermore,
we assume the z-dependent phase spread is small and the
amplitude-dependent tune shift can be ignored (due to ex-
tremely low vertical emittance, for instance). Under these
assumptions, the betatron phase change Eq. (5) reduces to
Δφy(n)/2π = ν0

yn − 2ξyz/ηC and the n-th turn vertical
distribution in ȳ and p̄y becomes

ρy =
1

2πεy
e
−

ȳ2+p̄2
y−2(p̄y cos Δφy+ȳ sinΔφy)ky

√
εy+k2

yεy

2εy . (23)

Thus the m-th moments of z for a vertical slice can be ob-
tained as

〈zm〉y =
∫∫ ∞

−∞
dz dp̄y zmρyρz

/∫∫ ∞

−∞
dz dp̄y ρyρz, (24)

where the other three dimensions do not contribute. Inte-
grating over p̄y yields a z-dependent factor of the integrand
for integration over z as

zm e
− z2

2σ2
z

+
2ȳky

√
εy sin Δφy+k2

yεy cos2 Δφy

2εy . (25)

Since z-dependent phase spread is assumed small, we ex-
pand the exponent to second-order in z and obtain the z-
dependent integrand as zm exp(−p z2 + 2qz) where

p =
1

2σ2
z

+ 2ky

(
2πξy
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)2(
ky cos 2φ0 +
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εy

)
, (26)
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2πξy
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(
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ȳ
√

εy

)
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Here φ0 is the betatron phase of the centroid. Using
∫ ∞

−∞
dz e−p z2+2qz{1, z, z2}=

√
π

p
e

q2

p {1,
q

p
,
p + 2q2

2p2
}, (28)

the first and second moments can be written as 〈z〉y = q/p
and 〈z2〉y = (p+2q2)/2p2, and the y-slice length becomes

σz(ȳ) =
√
〈z2〉y − 〈z〉2y = 1/

√
2p . Thus,

σz(ȳ) =
σz√

1 + 4k2
y

(
ξyσδ
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)2 (
cos 2φ0 + ȳ sin φ0

ky
√

εy
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At the bunch center, from Eq. (12), ȳ = ky
√

εy sin φ0, the
bunch length reduces to

σz =
σz√

1 + 4k2
y

(
ξyσδ

νs

)2

cos2 φ0

. (30)

Clearly the bunch length of a vertical slice could be much
shorter than the total bunch length by a factor

 (0)

σz

σz(ȳ)
≤ 2ξyσδ

νs
ky. (31)

Note that this compression ratio does not depend on the
transverse beam properties such as emittance, although the
feasible maximum kick depends on emittance as well as
physical and dynamical apertures. The factor 2ξyσδ/νs

should be on the order of one for maximizing both the
y-z correlation and the compression ratio but keeping the
phase spread not too large. In practice, the compression
ratio may be decreased by any nonchromatic decoherence
processes, including wakefield and radiation effects we ne-
glected here.
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