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CENTROID, SIZE, AND EMITTANCE OF A SLICE IN A KICKED BUNCH*
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Abstract

A transversely kicked bunch will decohere due to,
among other things, chromatic and amplitude-dependent
tune shifts. The chromatic tune shift leads to correlation
between transverse and longitudinal phase space. Such a
correlation can be used for compressing synchrotron radia-
tion of the bunch with adequate optics. Inthisreport, were-
vise the decoherence calculation to derive the centroid and
second moments of a beam dlice in a kicked bunch, tak-
ing into account chromatic and nonlinear decoherence, but
neglecting wakefield and radiation damping, etc. A sim-
pleformulafor estimating slice bunch length (and potential
pulse compression ratio) is given for the ideal situation.

INTRODUCTION

At synchrotron radiation facilities, photon pulses much
shorter than the electron bunch length are desired for many
potentia applications. To meet such a challenge, various
techniques have been proposed. The simplest technique
is to use a vertically kicked bunch [1]. After the kick, at
about half a synchrotron period, a vertically tilted bunch
will form due to chromatic decoherence. The photon pulse
emitted from such a tilted bunch inherits a strong longitu-
dinal and vertical correlation that can be exploited to dice
out amuch shorter pulse with adlit or to compressthelong
pulse into a short one with adequate optics. Decoherence
of akicked bunch has been well studied (see, for example,
[2-5]), but the behavior of bunch slices has not been exam-
ined carefully. Here we give the detailed characteristics of
a beam dlice in a kicked bunch, taking into account chro-
matic and nonlinear decoherence, but neglecting wakefield
and radiation damping, etc. We give the results in the nor-
mal coordinates at the kick location, which can be easily
transferred to the laboratory coordinates at the desired |o-
cation.

PHASE-SPACE DISTRIBUTION

For convenience we work with the norma coordinates
{Z, Pz, Y, Dz, 2,0} and action-angle variables J, ,, ¢z .
Assuming there are no transverse linear couplings at the
kicker and the radiation source, these coordinates can be
easily translated into the lab coordinatesvia
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where 3, and o, are the vertical Twiss parameters at the
involved location. The same holdsfor the horizontal plane.

Before the kick, assuming a well-damped bunch, the
phase-space distribution reads
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Right after a vertical kick Ay’, the vertical distribution is
changed to
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where k, = /2AJy/e, = %Ay’ is a dimensionless
y/ € »

quantity that measuresthe effectivekick ontheaction AJ,,.
Without damping and excitation, each particle moves on
a circle in the phase space of normal coordinates, thus
the phase-space distribution evolves with a simple phase
shift. Let Ag¢,(n) be the betatron phase change accumu-
lated during n turns after the kick. The distribution at the
n-th turn can be obtained by replacing the phase ¢, to
o, = ¢, — Agy(n) in Eq. (3) above. The phase shift
is determined by the vertical tune

Vy:V2+€y5+any+anyz+v (4)

where vy is the linear vertical tune, &, is the chromatic-
ity, and a,, and a,,, are the tune-shift-with-amplitude coef-
ficients. Integrating over n turns gives the phase change
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Here z is the particle's initia longitudinal position when
the kick occurs, 7 is the slippage factor, and C' is the cir-
cumference of thering. The last term results from the in-
tegration [ &, ds/C and the longitudinal equation of mo-
tion 2/ = —nd. We see that the chromatic betatron phase
deviation is proportional to the particle's longitudinal po-
sition. This s the key to generate the transverse and lon-
gitudinal correlation via chromatic decoherence. To fin-
ish the n-th turn distribution, zy needs to be written as a
function of phase-space variables at the n-th turn, which
can be obtained from the longitudina one-turn map as
zo = cos(2mvsn) z — By sin(2mvgn) §, where vy is the
synchrotron tuneand 3, = o, /o isthe longitudinal beta
function. If the location of observation is different from
the kick location, one can simply add the corresponding
phase advance, say ¢,, in Eq. (5). If there is horizontal
kick as well, a similar distribution holds. The tune-shift-
with-amplitude coefficientS a;y = ayq.
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CENTROID OF A BUNCH SLICE

First we calculate the centroid of alongitudina slice at
position z, which is given by

D)2 +i(py). = (2T,

where (- - ). means phase-space averagefor the z diceand
(---)¢{x) means average over the X variables. It is conve-
nient to carry out the integration in action-angle variables
and change the variable ¢, , to ®, ,. Thus, except for the
normalization factor that will leave out the z distribution,
the slice centroid can be written as

/sz APy d/2T e Ev TR0 (] By 2, 0),

()
where p,, is the n-th turn distribution obtained above. This
integral factorsinto three parts. Introducing 6, = 2waye,n
and 0, = 2may€,n, the horizontal part yields

y>{r7pz,y7py,6}: (6)
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The vertical part yields
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The longitudinal part yields (without the z distribution)
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Averaging over al dices gives the usua chromatic form
factor [2], withnC'/3. = 27vs,

F:/OO dz e—%
' oV 2O,
(11)

Combining Egs. (8, 9, 10), we have the centroid of alongi-
tudinal dliceat = as

—2( —E?/:‘S )2 sin? (rvgn)

Eq. (10) =e
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The horizontal centroid can be obtained by simply switch-
ing xz and y.

Compared to the bunch centroid, the dlice centroid has
adifferent chromatic form factor, and more interesting, an
extra phase factor that is proportional to the longitudinal
position of adice. Clearly at half a synchrotron period af-
ter the kick, the glice betatron motion and its z-dependence
reaches maximum. By proper choice of the coefficient
(¢&,05/vs) sin® (Tvgn), the phase spread over the bunch can
be limited to the linear region of either the sine or cosine
function, thus a rather linear correlation between dlice ver-
tical position/angle and longitudinal position can be ob-
tained, which can be used to compress photon pul ses.

SIZE, EMITTANCE OF A BUNCH SLICE

The second moments can be worked out similarly. Re-
sults are given for the vertical plane. Switching = and y
gives the horizontal plane results. For a z dlice, we obvi-
oudly have

2

<§2>z + <ﬁz>z = <2Jy>z = 26y(1 + ?u)v (14)
which is invariant since radiation effects are ignored. To

obtain the individual second moments, we calculate
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(15)
which hasthefollowing three factors. The horizontal factor
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The vertical factor
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The chromatic factor
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= 6
Averaging over all dices again gives the usual chromatic
form factor F;!. Combining Egs. (16, 17, 18) gives
(7 +1ipy)?): = —kpey A exp(—igs), and together with
Eq. (14), after some algebra, we have the rms values of a
longitudinal slice at =z as

kQ
ag =€ {1+ 2y [1 — A2 4+ A2 cos(2¢y) — Ay cos gbg]}, (19)

k2
7= {1+ {1 — A3 — 4% cos(200)+ A cos @1}, @
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O’Z%/py = Ey €y[ Az sin g — A?sin(2¢))]. (22)
The rms slice emittance €, = /070, — 0y, evolvesas
the bunch decoheres according to
~ 2 2 kj 2 2
€y = €y 1—|—]<;y(1—A1)+Z[1—2A1—A2 +
2A2 Ay cos(¢hs — 2@]}5 (22)

Note that ¢, istheinitial vertical emittance. The quantities
Ay, ¢1 have been given before, and
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BUNCH LENGTH OF A VERTICAL SLICE

For the purpose of generating short photon pulses, it
is interesting to compute the bunch length of a vertica
dlice at . Unfortunately, the integration needed for a ver-
tical dice appears much harder (if doable) since we can
not integrate over the angle variable anymore. Here we
limit our calculation to the simplest yet particularly inter-
esting case at half a synchrotron period, i.e., vsn = 1/2,
where the y-z correlation reaches maximum. Furthermore,
we assume the z-dependent phase spread is small and the
amplitude-dependent tune shift can be ignored (due to ex-
tremely low vertical emittance, for instance). Under these
assumptions, the betatron phase change Eq. (5) reduces to
Ady(n)/2m = vyn — 2&,z/nC and the n-th turn vertical
distribution in i and p,, becomes

1 'g2+17§—2(5,y cos Ady+7sin Ay )ky ﬁeywegey
— - 2e
Py = € v

. (23)

Thus the m-th moments of z for avertical slice can be ob-
tained as

(z"™)y :// dz dp, Zmpypz/// dzdpy pyp-, (24)

where the other three dimensions do not contribute. Inte-
grating over p,, yields a z-dependent factor of the integrand
for integration over z as

2 2kyy/Cy sin Ady+k2 ey cos? Mgy

2o 202 2y

(25)
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Since z-dependent phase spread is assumed small, we ex-
pand the exponent to second-order in z and obtain the -
dependent integrand as 2™ exp(—p 22 + 2qz) where

S 2 ki cos 20y + LSBO0) (05
b= 202 nC v 0 NG
2 . i
q = ?;Téy k, (ky sin ¢g — \/—ye_y) €os ¢y. (27)
Here ¢ isthe betatron phase of the centroid. Using
/dZ e P* +2qz{1 Py 22} \/7 —{ q p + 2(] } (28)
P’

the first and second moments can be written as (z),, = ¢q/p
and (z2), = (p+24?)/2p?, and the y-slice length becomes

0.(7) = /(22)y — (2)2 = 1/3/2p. Thus,

Oz

UZ(Z/) = =
\/1 +4k2 (5’!”°> (c052¢ + me¢0)

. (29)

€y

At the bunch center, from Eq. (12), § = k, /€, sin ¢y, the
bunch length reducesto

Oz

- .
\/1 + 4k2 (%) cos? ¢
Clearly the bunch length of a vertical slice could be much
shorter than the total bunch length by a factor

0:(0) = (30)

Oz < 251/0—6
‘72@) Vs

Note that this compression ratio does not depend on the
transverse beam properties such as emittance, although the
feasible maximum kick depends on emittance as well as
physical and dynamical apertures. The factor 2£,05/vs
should be on the order of one for maximizing both the
y-z correlation and the compression ratio but keeping the
phase spread not too large. In practice, the compression
ratio may be decreased by any nonchromatic decoherence
processes, including wakefield and radiation effects we ne-
glected here.

k. (31)
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