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Abstract
When a high-intensity beam with bunch-trains and gaps

passes a cavity with a high-gain vector feedback
enforcing a constant voltage, large transients appear,
stressing the RF high power hardware and increasing the
trip rate. By modulating the cavity voltage with a varying
periodic waveform (set-function), the RF power can be
made constant while still preserving the high feedback
gain. The average cavity voltage is conserved but bunches
have to settle at slightly shifted positions. A method is
derived to obtain this set-function in practice while
making no assumptions or measurements of the beam or
RF parameters. Adiabatic iterations are made including
the whole machine as an analog computing device, using
all parameters as they are. A computer simulation shows
the success of the method.

THE PROBLEM
An RF vector feedback (Fig. 1, top) with high gain is

necessary in any high current synchrotron to prevent
longitudinal coupled bunch instability due to the main
impedance. For constant enforced voltage a high intensity
beam with long bunch-trains and gaps induces large RF
power transients. These require an increased installed RF
power, more mains consumption and particularly stress all
RF high power components, hence increasing the risk of
trips with total beam loss. Therefore these transients
should be largely reduced if this is compatible with other
requirements of accelerator and detectors. A similar
problem was encountered and handled at PEP II [1].

THE SET-FUNCTION DEFINITION
An RF system as in Fig. 1, top, is assumed. Bunches in

coast may have diverse (equilibrium) shapes and charges,
including zero in gaps. A first ‘Gedanken-Experiment’ is
executed with this beam, but starting with an intensity
scaled down so much that beam loading can be
considered non-existent. Then cavity voltage and RF
power are constant, bunches are at their nominal position.
Furthermore, conditions remain unchanged when opening
the feedback loop between the red and green triangle at
( ) and injecting at the red triangle a constant drive wave
‘d’, identical to the (previous and present) signal ‘m’, the
cavity probe signal minus the constant set-value V0.

Now adiabatically bunch charges are scaled up again.
To keep the cavity voltage on average at its nominal
value, the constant drive ‘d’ may have to be adjusted; it is
suitable, but not indispensable, to also detune the cavity
for (average) reactive beam loading compensation. While
scaling up the bunch charges, the cavity voltage will start

dithering around its average and bunches will slightly
drift away from their initial nominal position. Meanwhile
the RF power remains perfectly constant along the beam
revolution, up to fully re-scaled bunch charges.
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Fig. 1: Top: the principal blocks of a fast RF vector
feedback. The cavity field is driven simultaneously by
klystron and beam, the latter reacting itself to changes of
the cavity field (coloured triangles to be ignored yet).
Bottom: the ‘Smoother’: Incoming signals (green) can be
recorded in a cyclic storage r matching one revolution
period. A similar cyclic storage works as an active set-
function sa: synchronized to the beam, its contents turned
out in a never-ending loop and fed into the comparator of
unity gain. A passive set-function sp allows hidden
manipulations and, once ready, both set-functions can be
swapped instantly. The dashed ‘out-recording’ may be
used as an alternative to the ‘in-recording’.

Now a ‘Smoother’, as described in the caption of
Fig. 1, bottom, is added, first joining the two green
triangles only; it records ‘m’, periodic* with the
revolution period, as in-recording r. With a ‘frozen’ r the
set-function sa=r-d is made active. Then the  ‘Smoother’
gives (red triangle) d’=m-sa=m-(r-d). But m=r
(periodicity) and hence d’ is constant and equal to d,
despite the dithering of the probe signal. sa is the required
set-function. Closing the loop by joining the red triangles
is now completely transparent: the high gain is re-
established with a constant RF power, (considerably)
below previous peaks. The average cavity voltage is
conserved but bunch positions have slightly drifted away
from the nominal ones.

For LHC, even at ultimate beam intensity, these drifts
in bunch position remain very small compared to the

                                                            
* in reality with an open loop the LHC beam would get unstable
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bunch length. Therefore the resulting change in proton-
proton collision position and time is very small compared
to the natural uncertainty: this RF manipulation remains
imperceptible for the physics experiments [2].

It is obvious that this sa is unique for the given
boundary conditions; when these slightly change, e.g. by
intensity loss in coast, small transients will reappear.
Adapting sa to new boundary conditions will cause tiny
beam perturbations†, hence this process should not run
permanently but only rarely when considered worthwhile.

During slow energy ramping (as in LHC) the system is
practically periodic in short term: an sa can be iterated that
is perfect for that instant. While ramping further, ‘m’ may
start to deviate from the previous recording ‘r’ and small
transients will start to show up. A new sa may be iterated
once in a while, hence also in slow ramp the RF power
can be kept close to constant avoiding large power spikes.

In reality sa cannot be determined as done above: a high
intensity beam will go unstable when opening the loop.
Since set-functions act inside a high gain loop, any
manipulation error is amplified: a well-designed
procedure chosen with the utmost care is necessary.

THE ADAPTIVE METHOD
In theory sa could even be calculated and fed into the

‘Smoother’, provided the parameters of all bunches, RF
system(s) and machine optics were perfectly known,
either by assumption or measurement. However, any
discrepancy to reality is amplified by the loop gain,
making this a very difficult enterprise. Also other ideas
relying on simultaneity at a reference-point encounter the
problem of signal transmission properties to this point and
need calibration.

For the previous open loop case the signal ‘m’ deduced
as a constant term d was used successfully as a set-
function providing constant RF power output. But this
works only if previously bunches have been drifting
adiabatically precisely to their new equilibrium position,
compatible with constant RF power. This is not the case
here and the activation of such a set-function, even
adiabatically, would produce different transients but just
as large.

To circumvent all these difficulties, we use the
machine, RF system and beam at large as a sort of analog
computer and iterate the set-function with it, embedding
parameters as they truly are, simultaneity being intrinsic.

The first ‘Gedanken-Experiment’, just before closing
the loop, can be considered as a feedback system with
zero  gain. This leads to the idea to first smooth the
transients by slightly‡ and adiabatically lowering the loop
gain g. Then instantly g is switched back to the initial g0

while simultaneously the set-function is modified such
that the output of the ‘Smoother’ remains unchanged,
conserving the smoothing of transients.

                                                            
† as small as desired by correspondingly reducing the adaptation speed
‡ by far remaining within the loop gain range assuring a stable beam

A second ‘Gedanken-Experiment’ deploys the same
hardware with the ‘Smoother’ included in the closed loop,
and full beam. The comparator is fed at (+) with ‘m’ and
at (-) with the active set-function sa, the high power chain
then being driven by d=m-sa. Initially sa is set to zero,
corresponding to the ‘classical’ system with d0=m0 with
nominal loop-gain g0, showing large RF transients.

Now the gain  of the comparator, normally unity, is
lowered smoothly, adiabatic for the beam, by a small
amount to =x<1 (e.g. x=0.9), the loop gain being
lowered by the same factor§. Bunches are drifting to
slightly shifted positions, m0 smoothly transforms to m1

and the drive becomes d1=x·(m1-sa), the loop-gain never
being below x·g0, preventing any beam instability.

A (stable) measurement m1 for one turn is frozen as
r m1 and the passive set-function sp=r·(1-x)+x·sa is
determined with it. Then simultaneously  is set back to
unity and sp is made active. For the signal m2 the new
drive is d2=(m2-m1)+x·(m1-sa)=(m2-m1)+d1. If m2 m1 is
true also d2 d1 holds: the switching cannot be detected
outside the ‘Smoother’, everything runs as before. After
such a step all transients are reduced, corresponding to
g=x·g0, but the full loop gain g0 is recovered.

Instead of instant switching, the ‘return path’ to sa –> sp

and –>1 could be executed slowly, even consecutively,
but always adiabatically** enough to avoid any beam
perturbation: the final state will be the same. Then one
complete step would consist of four parts: 1) –>x; 2)
stabilize, determine sp; 3) sa –> sp; 4) –>1.

In a sequence of such steps one ends by ramping from
=x to =1 while the next step starts by ramping from =1

to =x. Dropping this useless double operation yields the
new sequence (• –>x); •stabilize, determine sp; • sa –> sp;
• stabilize, determine sp; • sa –> sp; …. and so on.

The first unique ramping –>x can even be left out: one
can imagine that starting with an even higher gain
g0’=g0/x it was already done. This even economizes on
the (difficult) hardware for a smooth gain ramping.

One last point remains: each such step also reduces the
apparent gain g for the average cavity voltage
<V>=V0·g/(1+g) by x, letting also <V> converge to zero.
To prevent this, the ‘Smoother’ always has to preserve the
average; this is done by shifting <sp> to zero at each step,
i.e. replacing sp as expressed above by sp - <sp>.

After n such steps transients will correspond to a gain
of g=xn·g0, finally converging to zero, while g0 is
recovered after each iteration step, <V> being conserved.

Alternative hardware options
There are two hardware alternatives, possibly handier

for certain designs. First, as sketched in Fig. 1, bottom,
instead of in-recording r the out-recording r’ might be
used. Then sp has to be defined as sp = sa+r’·(1/x -1) with,
as above, subtraction of its average to preserve <V>.

                                                            
§ strictly true only for a perfectly linear chain (no important difference)
** at the same time avoiding problems of precision and simultaneity
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Second, the ‘Smoother’ might be installed at ( ) instead
of ( ). To prove this, the same chain of arguments as
above for ( ) has to be followed. The set-functions at ( )
and ( ) are probably different from each other.

MULTIPLE DIFFERENT CAVITIES
Till now the RF system was treated like a single cavity.

In reality different RF systems may work in parallel, as
the 400 MHz and future 200 MHz systems in LHC, but
even ‘identical’ cavities operate at slightly different
parameters due to calibration uncertainties (Vacc), setting
differences ( , Qext) and manufacturing scatter (R/Q).
Due to these differences and the high gain, each cavity
needs its own set-function adapted to its precise
parameters.

For any multiple-cavity system, the first ‘Gedanken-
Experiment’ can be repeated in operating all cavities with
open loop while bunch charges are scaled up again
adiabatically. Once this is done, all cavity loops can be
closed as described above, such that each cavity is
controlled again by its individual high gain feedback
system while receiving constant RF power. This argument
proves that also here there is a (unique) set of set-
functions for the given boundary conditions.

This set can be iterated similarly to the unique cavity
case. When iterating cavity set-functions one-by-one, the
beam cannot directly approach its final position, as
defined above. Therefore it is much more efficient to
iterate all cavities in parallel. Since all changes are
executed adiabatically, this parallelism does not mean that
all operations have to be perfectly synchronized nor use
the same reduction factor x.

COMPUTER SIMULATIONS
The above algorithm with different refinements was

incorporated into the program CYCLOPS [3] and
simulations were done. As example, Fig. 2a shows the
initial state before, Fig. 2b the final state after adaptation
of a set-function, the success of the adaptation is apparent.
The bunch energy deviation (red bands) stays close to
zero, as it should be in equilibrium, and the equilibrium
time/phase (black bands) have found their new
equilibrium.

A more detailed theoretical analysis with enlarged
scope, refinements to the (simulated) execution and

further simulations and phase space representation of
bunches can be found in [4]

8*NB/Cu  Acc Cavity, turn       0, <-250 to 3313>  Injection next batch
Bunch Rep. freq. 40.080 MHz (   24.95ns),  3564/turn
FB samplings:   1 per inter bunch time -> dT= 24.95 ns
p+ qB= 1.68210e-08 C  IDC.pk= 0.674 bL= 30.0 cm
pcB=7000.0 GeV gt=53.700 Beam-loss  0.00%

f= 400.8 MHz (10/Tb) R/Q= 45.0 cOhm Q0= 2.000e+09 Qext=8.00e+04
P 500.0 kW del= 400.00ns df=  -2.76 kHz  fb=0.9006 dV/bunch   1.91 kV
BW 3.0 MHz VSet ( 0.000, 2.000) MV  A.g. (10.00, 0.00) sq[MW]/MV
1TFB bits= 3 Wt= 4.0 t-shift  20 pos.

    -0.050 -      0.050  dT[ns]
   -30.000 -     30.000  dE[MeV]

V real -1.00e+06 |  3.00e+06
V imag -1.00e+06 |  3.00e+06

Pgen  0.00e+00 |  4.00e+05
Pref  0.00e+00 |  4.00e+05

J. T.

Fig 2a: One revolution in LHC (89 μs) before adaptation:
large transients. Red (incident, partly covered by pink
reflected trace), pink (reflected) RF power (scale 0-
400 kW); green (I), blue (Q) accelerating voltage
components (-1 to +3 MV); red bands: bunch energy
deviation (scale ±30 MeV); black bands: bunch
equilibrium phase (expressed in time, scale ±50 ps). The
beam dump gap (close to the left end, no bands) and the
kicker-gaps are clearly visible.

8*NB/Cu  Acc Cavity, turn  132000, <-250 to 3313>  
Bunch Rep. freq. 40.080 MHz (   24.95ns),  3564/turn
FB samplings:   1 per inter bunch time -> dT= 24.95 ns
p+ qB= 1.68210e-08 C  IDC.pk= 0.674 bL= 30.0 cm
pcB=7000.0 GeV gt=53.700 Beam-loss  0.00%

f= 400.8 MHz (10/Tb) R/Q= 45.0 cOhm Q0= 2.000e+09 Qext=8.00e+04
P 500.0 kW del= 400.00ns df=  -4.30 kHz  fb=0.9006 dV/bunch   1.91 kV
BW 3.0 MHz VSet ( 0.000, 2.000) MV  A.g. (10.00, 0.00) sq[MW]/MV
1TFB bits= 3 Wt= 4.0 t-shift  20 pos.A->SF.Step Set-r, V0

    -0.050 -      0.050  dT[ns]
   -30.000 -     30.000  dE[MeV]

V real -1.00e+06 |  3.00e+06
V imag -1.00e+06 |  3.00e+06

Pgen  0.00e+00 |  4.00e+05
Pref  0.00e+00 |  4.00e+05

J. T.

Fig 2b: As Fig. 2a but after adaptation for 132000 turns
(about 11 s): nearly constant RF power. Bunch positions
now shifted as already shown in [2], energy deviation
from equilibrium ±0.4 MeV. Cavity tuning drifts from
half-detuning at –2.76 kHz to –4.32 kHz.
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