
AN ILC MAIN LINAC SIMULATION PACKAGE BASED ON MERLIN
D. Krücker*, F. Poirier*, N. Walker*, DESY, Hamburg, Germany

Abstract

The preservation of the ultra-small vertical emittance in
the International Linear Collider (ILC) will require the
use of beam-based alignment techniques, the expected
performance of which relies heavily on the use of
simulation tools. In this report, we present the newest
release of a purpose-built ILC main linac simulation tool,
based on the Merlin C++ class library [1]. Examples of
results from Dispersion Free Steering (DFS) simulations
are also be presented.

INTRODUCTION
The International Linear Collider (ILC) requires the

generation and subsequent preservation of ultra-small
vertical emittance beams. The extremely tight alignment
tolerances required to avoid emittance dilution due to
spurious dispersive effects, mandates the use of Beam
Base Alignment (BBA) and other beam-based tuning
emittance tuning techniques. Dispersion Free Steering
(DFS) [2] is one now relatively well established BBA
technique, primarily foreseen as one of the basic tools for
use in the superconducting linac.

The emittance tuning has historically relied on the use
of simulation tools. Over the last decade these tools have
progressively become faster and more sophisticated,
allowing ever more realistic modelling of the accelerator.
One of the goals of the ILC beam-dynamics community is
to provide full so-called ‘start-to-end’ simulations of the
collider, which includes both the initial static tuning
(BBA), emittance and ultimately luminosity tuning, in a
simulated realistic environment containing both static and
dynamic (i.e. time-dependent) errors.

As part of this on-going effort, we present here the first
release of a new package for simulating DFS in the main
linac of the ILC. The application is written in C++ and
has been implemented using the Merlin Class Library for
Accelerator Simulations [1].

THE FUNDAMENTAL BBA ALGORITHM
Dispersion Free Steering – or DFS as it is known –

refers to a class of BBA algorithms which attempt to
locally correct the anomalous dispersion arising from
magnet and other accelerator component alignment errors.
The DFS algorithms have been developed by many
groups over the years and existing studies are well
documented.

Although manifestly similar in approach, the DFS
studies made to date by different groups tend to differ in

the exact details of how the algorithm is applied. These
differences have often been quoted as the reason why
results have not quantitatively agreed in the past. With
this in mind, ILCDFS has been designed to support many
variants of DFS, with a view to making direct
comparisons of the different possible approaches.

The basic DFS algorithm attempts to correct an off-
energy trajectory to the design value. This is achieved by
recording the difference between an on-energy and off-
energy trajectories, and finding a steering solution such
that the following figure of merit is minimised:

 [] []2 22 2 2() () (0) (0)diff i i abs i i

i

w y y w y yχ δ δ= Δ − Δ + −∑ ,

where () () (0)i i iy y yδ δΔ = − is the measured (simulated)
difference trajectory at the ith monitor for an energy
deviation δ. The tilda ~ indicates the design or goal
value. The second term is a soft constraint on the absolute
(on-energy) trajectory. wdiff and wabs are the weights for
the difference and absolute trajectories respectively
(wdiff >> wabs). The standard approach is to divide the
main linac into several overlapping segments (sometimes
referred to as bins), and correct each segment in turn.

Where the differences in algorithms appear can be
broadly divided into two categories:

1. energy adjustment approach;
2. segment boundary corrections.

A further difference is the basic beam dynamics models
used for simulating the beam in the main linac. In the
ILCDFS framework, these three fundamental concepts are
encapsulated as abstract C++ classes, allowing them to be
easily replaced and modified.

ILCDFS PHILOSOPHY AND STRUCTURE
Figure 1 shows the high-level class structure of

ILCDFS. The central (control) class is DFSApp, of which
there is only one instantiation in the application. DFSApp
is responsible for coordinating the simulation, and
iterating the DFS algorithms over the segments of the
accelerator. Class DFSCorrection encapsulates the DFS
algorithm itself. An object of class DFSCorrection is
associated with a unique accelerator segment, and is
responsible for:

• calculating the required model response matrix to be

applied for the correction (using SVD);
• recording the necessary simulated data; and
• using the above model, calculating a correction and

applying it. * Work supported by the Commission of the European
Communities under the 6th Framework Programme ”Structuring
the European Research Area”, contract number RIDS-011899.

MOPLS065 Proceedings of EPAC 2006, Edinburgh, Scotland

694 03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques
A03 Linear Colliders

Figure 1 Basic class diagram (UML) showing the top-level structure of ILCDFS. The abstract classes on the right of

the diagram encapsulate the specific details of the algorithm being simulated.

Energy modification
DFSCorrection must know how to adjust the energy of

the accelerator in order to (a) construct the correction
model, and (b) to record the simulated data. The abstract
class EnergyAdjustmentPolicy encapsulates exact details
of how the energy modification is made. (Note that the

exact same method is used for constructing the correction
model as is used for acquiring the simulated data.) A
concrete EnergyAdjustmentPolicy can support an
arbitrary number of energy states: state 0 is by default the
on-energy machine, while states 1, 2, 3… can represent
measurements of trajectories with differing energy
configurations. An EnergyAdjustmentPolicy has access to
all the klystrons in the accelerator, as well as the beams
being tracked (one for each required state). The latter
enables a concrete policy to directly (artificially) modify

the beam energy or phase. Figure 2 shows examples of
possible energy adjustment policies, while Figure 3 shows
some example results.

Segment boundary correction
Since DFS is applied piecewise to the accelerator

segments. Several published approaches have advocated
correcting for the difference in initial phase space
coordinates at the segment entrance; this has been
considered necessary to mitigate beam jitter effects,
anomalous steering from cavities etc. In ILCDFS this
concept has been generalised into a data filter which is
applied to the recorded trajectories before the DFS
correction is calculated (abstract class BPMDataFilter)*.

ACCELERATOR MODELS AND ERRORS
Class Accelerator encapsulates all the necessary

interfaces and details associated with the accelerator
model, including applying errors and simulating the
tracking of the beam (see section on Beam Dynamics
Models below). Class Accelerator provides a control
system type interface to the DFS algorithms classes,
which reflects the physical situation in the control room.

ILCDFS contains two models of the accelerator to be
simulated. The reference model represents the error-free
design accelerator, which is used by DFSCorrection to
calculate the correction model and design trajectories.
The simulation model represents an instantiation of the
physical accelerator including errors. The class
AcceleratorWithErrors (derived from class Accelerator)
contains methods for specifying and applying a wide

* As of writing, the beta release of ILCDFS contains no concrete
BPMDataFilter implementations.

correction
segment

linac axis

En
erg

y

nominal
(state 0)

gradient
modification

gradient
mod. + initial

beam

 klys.
 off

upstream klystron
shunting

Figure 2 Examples of possible approached to DFS
energy adjustment.

Proceedings of EPAC 2006, Edinburgh, Scotland MOPLS065

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques
A03 Linear Colliders

695

range of alignment, field and diagnostic errors. Generally,
several ‘seeds’ of random errors are generated for the
simulated model.

BEAM DYNAMICS MODELS
Class Accelerator supports several methods for tracking

a beam, which are used by DFSCorrection when applying
the algorithm (or calculating the correction model). The
actual tracking of the beam is delegated to an object of the
abstract class BeamDynamicsModel. This mechanism
allows the ‘plug and play’ of different physical models of
the beam dynamics to be used. Two concrete
BeamDynamicsModel classes are currently supported:

• ParticleTrackingModel: represents a beam as an

ensemble of particles which are tracked using ray
tracing through the accelerator. A
ParticleTrackingModel with a single particle can be
used to approximately simulate the beam centroid.

• SMPTrackingModel: represents a beam as a
collection of so-called sliced macro-particles, each
of which represents the first- and second-order
moments of that slice of the bunch. The former is
generally more accurate but significantly slower
than the latter (which is the preferred approach for
linac studies). The BeamDynamicsModel associated
with both the reference and simulation models can
be changed. DFSApp contains three such models: a
beam dynamics model which is used by the:

• reference model for calculation of the correction

model (response matrices).
• simulation model during the simulated data

acquisition for DFS correction
• simulation model during the final estimation of the

emittance after the correction is complete.

The current example in the beta-release uses a single-
particle ParticleTrackingModel for the first two, and an
SMPTrackingModel for the last. The use of a single ray-
tracing greatly speeds up the calculation of the response
matrices for the correction model, as well as the
application of the correction itself. SMPTrackingModel is
used to give an accurate estimate of the final emittance
(including wakefield effects).

IMPLEMENTATION
The classes discussed above represent an application

level design specific to the ILCDFS. The class structure
was arrived at after careful analysis of the problem at
hand. Each of these (and the remaining) classes in the
current ILCDFS have been implemented using classes
from the Merlin C++ class library. In most cases, the
complexity of the Merlin classes has been hidden by
wrapping them with the ILCDFS application classes,

which generally contain cleaner use-driven interfaces.
Some examples of implementation details are:

• Accelerator contains a pointer to the Merlin class

AcceleratorModel, which supplies the underlying
structure and functionality.

• The concrete BeamDynamicsModel classes use the
Merlin beam dynamics implementations
ParticleTracker and SMPTracker (together with
their associated Bunch types).

• DFSCorrection makes use of Merlin ROChannel
and RWChannel classes for generic access to
correctors and BPMs.

• EnergyAdjustmentPolicy uses the Merlin Klystron
and ReferenceParticle classes.

EXAMPLE RESULTS

Figure 3 Simulated vertical emittance growth along the
linac for various energy adjustment methods:
CG = constant gradient; IB = initial beam energy;
KS = klystron shunting (see figure 2). The results are
averaged over 100 seeds of random misalignments [3]

AVAILABILITY
The current ILCDFS beta-release – together with the

Merlin class library are available from the Merlin web
site [1].

REFERENCES
[1] Merlin – A C++ Class Library for Accelerator

Simulations; http://www.desy.de/~merlin.
[2] T. Raubenheimer, R. Ruth, Nucl. Instrum. Meth.

A302:191-208,1991
[3] F. Poirier et al, EUROTeV report (in preparation);

see also D. Schulte et al, these proceedings
(MOPLS098).

MOPLS065 Proceedings of EPAC 2006, Edinburgh, Scotland

696 03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques
A03 Linear Colliders

