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Abstract

We present scaling laws for the Montague-coupling res-
onance near 2Qx− 2Qy = 0 based on fully self-consistent
particle-in-cell simulation (in the 2D coasting beam limit)
and analytical theory. The scaling laws only contain the
emittance ratio and the incoherent tune shift. For lattice
design purpose they allow easy calculation of stop band
widths, growth times and the effect for fast crossing of the
stop-band. As an example, we apply the scaling laws to
the tune diagram of the SIS100 synchrotron of the FAIR
project, where avoidance of emittance exchange is crucial.

INTRODUCTION

The space-charge-induced emittance coupling near the
fourth order resonance condition 2Qx − 2Qy = 0, the
Montague resonance [1], is not only important for syn-
chrotrons, but also for high-current linear accelerators as
shown in Ref. [2]. There, the exchange can happen be-
tween the transverse and longitudinal degrees of freedom
known as “equipartitioning”, but the 2D model exchange is
still a good approximation [3].

For illustration we present an example for a specific set
of parameters borrowed from measurements at the CERN
Proton Synchrotron in the years 2002 and 2003 [4, 5]. We
use a fixed vertical working point Q0,y = 6.21 and an emit-
tance ratio of εx/εy = 3, while the absolute values of initial
normalized rms emittances are chosen as εx = 2.5π mm-
mrad and εy = 7.5π mm-mrad. The current is set to yield a
maximum vertical tune shift of ΔQy = −0.105 in the cen-
ter of a Gaussian distribution, which leads to a maximum
horizontal tune shift of ΔQx = −0.061 for the given emit-
tance ratio. Results are obtained with the MICROMAP-
code [6] employing 50.000 particles and a 128x128 grid
with conducting boundary conditions on a square box of
width 6 times the horizontal rms size of the beam.

SIMULATION EXAMPLES

The time behavior for two working points of the stan-
dard case under the assumption of a constant focusing and
Gaussian input distribution is shown in Fig. 1. The rms
emittance exchange (in units of π mm-mrad) increases, if
Q0,x is closer to Q0,y. The rapid initial exchange is fol-
lowed by emittance oscillations, which are slowly damped.
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Figure 1: Time evolution of rms emittances for Q0,x =
6.19, 6.20 and Q0,y = 6.21.

In Fig. 2 we show the final rms emittances by varying
Q0,x in small steps. The plotted values, where each marker
is a simulation with different Q0,x, are defined here and
in all subsequent figures as averages of the rms emittance
values between turn 1000 and 2000, which gives a good
measure of the saturation stage. In order to justify the use

Figure 2: Final rms emittances for different values of Q0,x.

of constant focusing for the present study, we have com-
pared it with (linear) periodic focusing and find that the
difference is negligible.
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SCALING LAWS

The basis of the proposed scaling law for the stop-band
width is a comparison of simulation results for different
tune shifts and emittances with results from the dispersion
relations derived from the analytical Vlasov theory for KV
beams. Details of this comparison are presented in Ref. [5].

For relatively small tune shifts, as in circular machines,
we characterize the effective stop band width by the width,
Θ, on the scale Q0,x (for linacs with strong tune depression
the expression is slightly modified [5]):

Θeff =
3
2
(
√

εr − 1)ΔQx. (1)

Note that ΔQx is introduced here as space charge tune shift
of an equivalent KV-beam, which is half the maximum tune
shift of a Gaussian beam. Also, εr > 1 is understood here;
if εr < 1, Eq. 1 still holds if x is consistently replaced by
y. “Effective” stop band width is understood here as extent
of the region of “significant” exchange, where we disregard
the points, where≤ 5% of the maximum possible exchange
occurs.

For practical applications the number of betatron peri-
ods, Nex, after which the first exchange or crossover of
emittances occurs, is of interest. By comparing simula-
tions with different parameters, we have found that strictly
N−1

ex ∝ ΔQx/Q0,x holds. Also, Nex depends only on the
emittance ratio, εr, and not on the absolute value of emit-
tances. The dependence on εr in Gaussian beam simula-
tions is relatively weak. In the range 1.5 ≤ εr ≤ 3 a good
fit to the simulation results is given by the simple expres-
sion, where ΔQx is referring to the equivalent KV-beam
tune depression:

N−1
ex ≈ ΔQx

Q0,x
. (2)

In a high-current linac with 50% tune depression by space
charge, for example, hence ΔQx/Q0,x = 0.5, this sug-
gests that the fastest exchange requires two (undepressed)
betatron periods only. In a ring, instead, Nex is typically in
the range 20 -100.

DYNAMICAL CROSSING OF
RESONANCES

In the previous sections we have discussed emittance
coupling for fixed working points, which is the normal sit-
uation. This “static” case is substantially different from
the case, where emittance exchange is achieved by slowly
moving the tune across the resonance - the “dynamical”
case.

The above Nex also provides a guidance for what can be
expected in case of a crossing of the stop band by a ramped
tune. For slow crossing of the stop band, e.g. N >> Nex,
the emittances are interchanged and the emittance ratio is
basically inverted. For fast crossing the emittance exchange
can be expected to be partial only, or negligible for very fast
crossing with N << Nex.

As an example for dynamical crossing we use the stan-
dard case of Fig. 2 and move the working point Q 0,x start-
ing from the side of lower tunes over the range 6.15 ≤

Figure 3: Evolution of emittances by crossing the stop-
band dynamically from below over 100 and 1000 turns.

Q0,x ≤ 6.27 enclosing the stop-band. For this crossing
“from below”we apply a linear tune ramp in time. In Fig. 3
we show the evolution of emittances as function of the in-
stantaneous tune for two cases, where the crossing of the
same tune range is performed in 100, respectively 1000
turns. It is noted that for the 100 turns case the final emit-
tances are practically equal; for the 1000 turns case the final
emittances are basically exchanged with the initial emit-
tances.

The complete picture of the final emittances after cross-
ing the band at variable number of turns is shown in Fig. 4.
In the 100 turns case the essential part of the stop-band in

Figure 4: Final emittances after crossing Q0,x = 6.15 →
6.27 at variable rates.

Fig. 2, which has a tune width of 0.04, is crossed in 33
turns or 205 betatron periods. This time agrees with the
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fastest rise time of the static case, which therefore sets the
time-scale needed for a crossing to just equalize final emit-
tances. Note that for faster crossing the exchange is only
partial, with a linear dependence on the number of turns.
Hence we find that with N < Nex the emittance exchange
is proportional to the inverse tune changing rate. For fixed
tune changing rate the emittance change depends quadrati-
cally on the tune shift due to the fact that both, the stop band
width and the growth rate (in the center of the stop band)
increase linearly with ΔQx. Defining Q̇ as tune change per
turn, we thus find that the emittance change follows

Δε ∝ (ΔQx)2

Q̇
, (3)

assuming that the full stop-band is crossed at constant rate.

Crossing in the opposite direction leads to a significantly
suppressed emittance coupling due to the fact that the space
charge de-tuning points downwards in the tune diagram
(details see Ref. [5]).

APPLICATION TO THE SIS100

The high-current working point of the SIS100 (WP1) is
not split by an integer [7]. Therefore, it has to be chosen
at a safe distance from the diagonal to avoid emittance ex-
change due to the Montague resonance. With the nominal
emittance ratio εr = 2.5 and an upper limit for the full tune
spread of ΔQy = −0.3 for a Gaussian beam, we obtain
from Eq. 1 a stop band width (in the direction of Q 0,x) of
0.13 to the left of the diagonal. This one-sided location of
the stop band is due to εx > εy - a reversal would make the
stop band flip around the axis.

Here it is appropriate to introduce a safety margin to
take into account that the above idealized theoretical re-
sults have been obtained under idealized conditions ignor-
ing synchrotron motion, dispersion and possibly other ef-
fects (like residual linear coupling). A comparison of Eq. 1
with measurements taken at the CERN Proton Synchrotron
in 2003 [4] for a similar emittance ratio suggests that the
edges of the measured stop bands are softer and extend
to about ±50% of the idealized stop band on each side.
We therefore adopt a doubling of the stop band of Eq. 1 as
safety margin, with the understanding that it is expanded on
each side by 50%. The resulting stop band of width 0.26
is shown in Fig. 5. Note that without the safety margin the
stop band would entirely be above the diagonal.

Closer to the integers we expect troubles with resistive
wall instabilities, hence the Montague stop band together
with the resistive wall limitation limits the working point
flexibility. An acceptable compromise for the SIS100 is
given by Q0,x = 18.84 and Q0,y = 18.73, but this requires
compensation of the half-integer resonance; for smaller
tune spread, e.g. ΔQy = −0.2, such a compensation is
avoidable.

Figure 5: Montague resonance stop band for SIS100 in-
cluding ±50% safety margin and proposed working point
WP1.

OUTLOOK

The space charge driven “Montague” coupling reso-
nance is an example of a purely space charge driven res-
onance, which can be described by relatively simple scal-
ing laws for practical applications. Due to its significant
strength the Montague resonance cannot be compensated.
For future work more experimental data and simulations
under realistic conditions would be desirable to obtain a
broader basis for the safety margin, which was introduced
here as ±50%.
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