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Abstract 
The computation algorithm of the transfer matrix in the 

presence of self-field of the intense charge particle beam 
is given. 

 
INTRODUCTION 

 
Within the framework of moment method [1] the 

computation algorithm of the transfer matrix in the 
presence of self-field of the intense charge particle beam 
is given. The transfer matrix depends on both the linear 
external electromagnetic field parameters and the initial 
value of the second order moments of the beam 
distribution function. In the case of coupled degrees of 
freedom the independent 2D subspaces of the whole 
phase space are found by means of the linear 
transformation of the phase space variables. The matrix of 
this transformation connects with second order moments 
of the beam distribution function. The momentum spread 
of the beam is taken into account also. 
 

BASIC EQUATIONS 
 

Let us consider the vector ( )1 2 1 2, , ,′ ′= =TY x x x x  

( )= T TX V , where superscript T defines transpose vector 
or matrix, prime denotes derivative with respect to 
distance s along the beam trajectory. In the linear 
approximation the vector Y satisfies to matrix equation: 

     ′ =Y AY     20⎛ ⎞
= ⎜ ⎟
⎝ ⎠

E
A

b a
         (1) 

Here En (n=2) is unit matrix of n-th order, a and b are 2×2 
matrices defined by both external electromagnetic fields 

exta , extb  and beam self-field sb : 
     exta a=    ext sb b b= +           (2) 
 In the presence of the longitudinal electric field sE  
system (1) must be added by equation for longitudinal 
momentum p: 

      1s s

p p

E Ep Z e
p A cp Bβ ρ β
′

= = ,             (3) 

where /p pv cβ = – relativistic velocity of the beam, c – 
speed of light, e – unit charge, Z,A – ion charge and mass. 
 Matrix sb depends on the beam RMS-dimensions [1]. 
Let us define the second order moments M of the beam 
distribution function f: 
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         1T TM YY YY f dV
N

= = ∫      (4) 

Here N is number of particle, integration in (4) is fulfilled 
over all phase space occupied by particles. In accordance 
with system (1) matrix M satisfy the equation [1]: 
          TM AM MA′ = +         (5) 
 

ROTATING FRAME 
 

 For simplification of system (1) it is possible to 
eliminate matrix a. Let us introduce new phase space 
variables RY  by means of linear transformation: 

     0 RY R Y=      0
0Q

R
Q Q
⎛ ⎞

= ⎜ ⎟′⎝ ⎠
,       (6) 

with 2×2 matrix Q. By substituting (6) into (1) we have: 
    R R RY A Y′ =    1 1

0 0 0 0RA R AR R R− − ′= −    (7) 
By representing matrix RA (7) in block form one can get: 

         20
R

R R

E
A

b a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

    

 ( )1 2Ra Q Q aQ− ′= − +   ( )1
Rb Q bQ aQ Q− ′ ′′= + −  (8) 

In the case 0Ra =  we have: 

 1
2

Q aQ′ =    1 21 1
4 2Rb Q b a a Q− ⎛ ⎞′= + −⎜ ⎟

⎝ ⎠
    (9) 

 For general focusing system with longitudinal 
electromagnetic fields sE , sB , dipole magnets and 
quadrupole lenses the matrices Q and Rb  have the 
following form ( 0p  is the initial value of momentum p): 

 0
0

p
Q Q

p
=   0

B B

B B

Cos Sin
Q

Sin Cos
ϕ ϕ
ϕ ϕ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

,        (10.1) 

       1
2

s
B

B
k

B
ϕ ρ

′ = =              (10.2) 

( )
2

2 2 2
e 0 0 2 23 2T s

R xt ext p
p s

E
b Q b Q k E k E

B
β β

⎛ ⎞
= − − − ⎜ ⎟

⎝ ⎠
  (10.3) 

Here matrix extb  is defined by gradients of the 
quadrupole lenses ( )G s  and bending radius of the dipole 
magnets ( )M sρ : 

    
2

( ) 1 0
( )

( )0

M
ext

G s
B sb

G s
B

ρ ρ

ρ

⎛ ⎞+⎜ ⎟
⎜ ⎟= −
⎜ ⎟

−⎜ ⎟
⎝ ⎠

      (10.4) 
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 Matrix of the second order moments M (4) is connected 
with one defined in the rotation frame RM  by the 
following manner: 
        0 0

T
RM R M R=            (11) 

 
BEAM SELF-FIELD 

 
 Influence of the beam self-field leads to dependence of 
the matrix R sb  on RMS dimensions [1]: 

     
1/ 2

0
3 1/ 2

1
( )

R xx
R s

A p p R xx

Mp Z Ib
p A I TrMβ γ

−
=      (12) 

Where I – beam current, AI  – Alfven’s current, pγ  – 

relativistic factor. Matrix 1/ 2
R xxM  is defined as: 

      1/ 2 1/ 2 T
R xx R xx R xx R RM M M X X= =      (13) 

 
TRANSFER MATRIX 

 
 Assuming all calculations are made in the rotational 
frame the notation “R” will be dropped in the successive 
expressions. Let us introduce matrix Λ  in accordance 
with equation (7): 

    A′Λ = Λ     20
0

E
A

b
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

        (14) 

 The product TΛΛ  satisfies to equation (5) for matrix 
M: For this reason equality TM = ΛΛ  will be valid at 
arbitrary point s if the same condition is valid at initial 
point of the system. 
 Transfer matrix R of system (14) may be found as: 
         1

0R −= ΛΛ             (15) 
The solution Y of the equations (7) and matrix M are 
defined by matrix R in the standard form: 
     0Y RY=      0

TM RM R= ,       (16) 
where index “0” denotes initial values of the variables. 
 In computer calculations it is convenient to represent 
matrices R and M in the block form: 

 
C S

R
C S
⎛ ⎞

= ⎜ ⎟′ ′⎝ ⎠
     xx xv

T
xv vv

M M
M

M M

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

      (17) 

In accordance with (14) 2×2 matrices C and S satisfy to 
the system of second order differential equation: 

 C bC
S bS

′′ =
′′ =

   ;   
0 0 2

20 0

0
0

C S E
EC S

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ⎝ ⎠⎝ ⎠

   (18) 

The equations for matrices C and S are not independent. 
They are connected by expression for matrix xxM  
defined the matrix sb  (12) for beam self-field: 
 0 0 0 0

T T T T T
xx xx xv xv vvM CM C SM C CM S SM S= + + +  (19) 

 Thus the elements of transfer matrix R satisfy to the 
nonlinear differential equations and its solutions depend 
on initial value of the second order moments. 

INDEPENDENT SUBSPACES 
 

 Let us introduce new phase space variables 1Y : 

     1Y TY=      
0x

xv v

t
T

t t
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

      (20) 

In accordance with formulae (7) and (20) vector 1Y  
satisfies to the equation (7) with matrices 1A  depending 
on elements of matrix T and its derivative. By postulating 
the antisymmetry of matrix 1A  one can get the equations 
for elements of matrix T: 

         
1

1 1( )
x x v

T
x v v

a t t
A

t t a

−

−

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

        (21) 

          x x x xvt t a t′ + =          (22.1) 

      1( )T T
xv xv x x v v xt t a bt t t t −′ + = +       (22.2) 

          1
v v v xv x vt t a t t t−′ + = −        (22.3) 

where , ,
T

x v x va a= −  – antisymmetric matrices. 
 By using equations (22) it may be shown that product 

TTT satisfies to equation (5) for the matrix M of the 
second order moments. Thereby the equality: 
          TT T M= ,                (23) 
is valid at any point s if it is valid at initial point of the 
focusing system. 
 Due to antisymmetry of matrix 1A  the transfer matrix 
of system R (17) may be represent in the following form: 
           1

4 0R TQ T −= ,                (24) 
where 4Q  is orthogonal matrix of forth order, i.e.: 

           4 4 4
TQ Q E=           (25) 

 The expression for matrix 4Q  may be found by using 
the new variables W: 

     1 wY Q W=    
0

0
x

w
v

Q
Q

Q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,        (26) 

,x vQ  − matrices of rotation diagonalizing matrix 1
x vt t− : 

     11 1

2

1/ 0

0 1/
T
x x v vQ t t Q

β
β

β
− − ⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

    (27) 

With these definitions vector W satisfies to equation: 

   wW A W′ =      
1

1

0

0
wA

β

β

−

−

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 ,   (28) 

if the antisymmetric matrices ,x va (21) is defined as: 

         , , ,
T

x v x v x va Q Q′=           (29) 
 The quantities 1,2β  coincides with the square root of 
the eugenvalues of matrix B: 
    1/ 2 1 1 1/ 2( )T

xx vv xv xx xv xxB M M M M M M− −= −    (30) 
and therefore is determined by the second order moments. 
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 Diagonal form of matrix β  gives possibility to find 
transfer matrix wR  for the phase space variable W: 

    0wW R W=   w w
w

w w

C S
R

S C
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
      (31.1) 

1

2

0

0w
Cos

C
Cos

μ
μ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 ; 1

2

0

0w
Sin

S
Sin

μ
μ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

  (31.2) 

Phase advances 1,2μ connects with functions 1,2β  (27): 

     1/ , 1,2i i iμ β′ = =            (32) 
 As it follows from (31) pairs of phase space variables 

1 3( , )w w  and 2 4( , )w w  form two independent 
2D subspaces of the whole four-dimensional phase space. 
 By using expressions (31) the orthogonal matrix 4Q  

(25) may be defined as 4 0
T

w w wQ Q R Q=  and transfer 
matrix R (17), (25) has the following form: 
        1

0 0
T

w w wR TQ R Q T −=          (32) 
 

MOMENTUM SPREAD 
 

 The momentum spread may be taking into account by 
introducing new phase space variable 

1 2 1 2( , , , , ) ( , )T T
pY x x x x Yδ δ′ ′= = , where /p pδ = Δ  is 

relative deviation of particle momentum from average 
value. Vector pY  satisfies to equation: 

 p p pY A Y′ =   
0

p
p p

A
b a

Σ⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

  
1 0 0
01 0
⎛ ⎞

Σ = ⎜ ⎟
⎝ ⎠

    (33) 

Here pb  is 3×2 rectangular matrix and pa  is 3×3 matrix. 
 In this case we may use the system of coordinate (20) 
with changing of dimensions of matrix T elements. Matrix 

xt  has the same 2×2 order as in previous case, xvt  is 3×2 
rectangular matrix, and vt  is 3×3 matrix. The equations 
for elements of matrix T may be found by the same 
manner as in previous section: 
        x xp x xvt a t t′ + = Σ            (33.1) 

   1( )T T T
xv xv xp x xv v v xt t a bt at t t t −′ + = + + Σ     (33.2) 

       1
v vp v v xv x vt a t at t t t−′ + = − Σ        (33.3) 

where xpa , vpa  are 2×2 and 3×3 antisymmetric matrices 
correspondingly. As in the previous case matrix T is 
connected with matrix M of the second order moments by 
equality (23). With these definitions vector 1

1p pY T Y−=  
satisfies the following equation: 

 1 1 1p p pY A Y′ =   
1

1 1( )

xp x v
p T

x v vp

a t t
A

t t a

−

−

⎛ ⎞Σ
⎜ ⎟=
⎜ ⎟− Σ⎝ ⎠

   (34) 

 The transfer matrix pR has the same form as matrix R  
defined by formula (24): 

        1
5 0pR TQ T −= ,               (35) 

where 5Q  is the orthogonal matrix of the fifth order. It 
may be found by the same manner as in the previous case: 

   5 0
T

p wp pQ Q R Q=     
0

0
xp

p
vp

Q
Q

Q
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

   (36) 

Here xpQ  and vpQ  are rotational matrices of the second 
and third order correspondingly giving the following 
result of the matrix 1

x vt t− Σ  transformation: 

       11

2

1/ 0 0
0 1/ 0

T
xp x v vpQ t t Q

β
β

− ⎛ ⎞
Σ = ⎜ ⎟

⎝ ⎠
      (37) 

 The quantities 1,21/ β  coincides with the square root of 

the eugenvalues of matrix pB defined by the second order 
moments: 
  1/ 2 1 1/ 2( )T T

p xx vv xv xx xv xxB M M M M M M− − −= Σ − Σ   (38) 

Matrix wpR  in (36) connects with matrix wR  (31): 

     
0

0
0

0 1
0 0 1

w w
w

wp w w

C S
R

R S C
⎛ ⎞

⎛ ⎞ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

     (39) 

The phase advances 1,2μ  are defined by beta functions 
(37) with the help of expressions (32). 
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