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Abstract

The computation algorithm of the transfer matrix in the
presence of self-field of the intense charge particle beam
is given.

INTRODUCTION

Within the framework of moment method [1] the
computation algorithm of the transfer matrix in the
presence of self-field of the intense charge particle beam
is given. The transfer matrix depends on both the linear
external electromagnetic field parameters and the initial
value of the second order moments of the beam
distribution function. In the case of coupled degrees of
freedom the independent 2D subspaces of the whole
phase space are found by means of the linear
transformation of the phase space variables. The matrix of
this transformation connects with second order moments
of the beam distribution function. The momentum spread
of the beam is taken into account also.

BASIC EQUATIONS

. ’ ’
Let us consider the vector Y’ = (x],xz, X, 5%, )=

= (X r VT) , Where superscript 7 defines transpose vector

or matrix, prime denotes derivative with respect to
distance s along the beam trajectory. In the linear
approximation the vector Y satisfies to matrix equation:

[0 E |
= 4 M

Here E, (n=2) is unit matrix of n-th order, a and b are 2x2
matrices defined by both external electromagnetic fields

Ay > by and beam self-field b, :
b=b,, +b, 2

In the presence of the longitudinal electric field E;

Y =4y

ext >
a4 = Qoyy

system (1) must be added by equation for longitudinal
momentum p:
P _ZeE 1 E
p AwpB, BppB,’

where [ p =Vp/c— relativistic velocity of the beam, ¢ —

3)

speed of light, e — unit charge, Z,A — ion charge and mass.
Matrix b, depends on the beam RMS-dimensions [1].

Let us define the second order moments M of the beam
distribution function f:
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M=F=%J‘YYdeV 4)

Here N is number of particle, integration in (4) is fulfilled
over all phase space occupied by particles. In accordance
with system (1) matrix M satisfy the equation [1]:

M’ =AM +MA" 5)
ROTATING FRAME

For simplification of system (1) it is possible to
eliminate matrix a. Let us introduce new phase space
variables Y by means of linear transformation:

0 0
R() = ( , B (6)
0 0
with 2x2 matrix Q. By substituting (6) into (1) we have:
Yy = AgYp A = Ry ARy — Ry Ry (7
By representing matrix Ap (7) in block form one can get:

[0 B
R= bR ap
ar =07 (220" +aQ) br=0""(bO+aQ'-Q") (8)
In the case ap =0 we have:
Q’=%aQ br=0" (b+%a2 —%a'jQ )

For general focusing system with longitudinal

electromagnetic fields E;, B;, dipole magnets and

Y:R()YR

quadrupole lenses the matrices Q and bp have the

following form ( p, is the initial value of momentum p):

Do Cospp  Singg
= 2 = : 10.1
2 PQO % [—Sin(pB Cosgij (10.)
k=Ll B
o5 =k=3%, (10.2)
E 2
B = Qi bos Qo =k By = (3—2ﬂ;)[ Yo ] E, (103)
ps

Here matrix b,

is defined by gradients of the
quadrupole lenses G(s) and bending radius of the dipole
magnets P, (s):

G(s), 1

b = | PP Pu©) (10.4)
ext _@
Bp
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Matrix of the second order moments M (4) is connected
with one defined in the rotation frame My by the

following manner:
M = RyMxR} (11)
BEAM SELF-FIELD

Influence of the beam self-field leads to dependence of
the matrix by, on RMS dimensions [1]:

-1/2
poZ 1 1 Mg
T AT 3 172 (12)
p 4 (ﬂ,ﬂ’p) TrMRxx

Where / — beam current, /, — Alfven’s current, Yp —

Rs

1/2

relativistic factor. Matrix M is defined as:

R xx
M}Q/)%x }Q/fx :MRxx:XRXIz (13)
TRANSFER MATRIX

Assuming all calculations are made in the rotational
frame the notation “R” will be dropped in the successive
expressions. Let us introduce matrix A in accordance

with equation (7):
0 E
A= .
o)

The product AAT satisfies to equation (5) for matrix

M: For this reason equality M =AAT will be valid at
arbitrary point s if the same condition is valid at initial
point of the system.
Transfer matrix R of system (14) may be found as:
R=AAy! (15)
The solution Y of the equations (7) and matrix M are
defined by matrix R in the standard form:
Y = RY, M = RMyRT , (16)
where index “0” denotes initial values of the variables.

In computer calculations it is convenient to represent
matrices R and M in the block form:

cC S M M
T I
c S Mxv Mvv

In accordance with (14) 2x2 matrices C and S satisfy to
the system of second order differential equation:

C"=bC G So| (E; 0
, : A i (18)
S”=bS Co So 0 £
The equations for matrices C and S are not independent.
They are connected by expression for matrix M,
defined the matrix b, (12) for beam self-field:
My, =CM o oCT +SML0CT +CM ST +5M 08T (19)
Thus the elements of transfer matrix R satisfy to the

nonlinear differential equations and its solutions depend
on initial value of the second order moments.

AN =A4AA

(14)

(17)
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INDEPENDENT SUBSPACES

Let us introduce new phase space variables 1] :

T=(tx 0]
tXV fv

In accordance with formulae (7) and (20) vector Y

Y =TV, (20)

satisfies to the equation (7) with matrices 4; depending

on elements of matrix 7" and its derivative. By postulating
the antisymmetry of matrix 4; one can get the equations

for elements of matrix 7-

-1

a t.t
Alz[ _lx T * VJ (21)

_(tx tv) a,
t +ta, =t (22.1)

t.) +ta.=b Tyl
xv xvax - tx +tvtv (tx ) (22-2)
1) +t,a, =—t 171, (22.3)

__ T
where a, ,, =-ay,

— antisymmetric matrices.
By using equations (22) it may be shown that product

TT7 satisfies to equation (5) for the matrix M of the
second order moments. Thereby the equality:

Tl =M, (23)
is valid at any point s if it is valid at initial point of the
focusing system.

Due to antisymmetry of matrix A4 the transfer matrix

of system R (17) may be represent in the following form:

R=TO,Ty", (24)
where Q, is orthogonal matrix of forth order, i.e.:
0,0; =E, (25)

The expression for matrix O, may be found by using

_[Y 0
Qw_(o Qv]a

Oy, — matrices of rotation diagonalizing matrix t;ltv :

T -1 _ -l /5,
thx thv_ﬂ _[ 0 l/ﬂz

With these definitions vector W satisfies to equation:

-1
4, =[ 0 4 ] . (28)
_lg—l 0

if the antisymmetric matrices a, ,, (21) is defined as:

T
Ayy = Q)’c,va,v (29)
The quantities 5, coincides with the square root of

the new variables W:

Y = QW (26)

27)

W= AW

the eugenvalues of matrix B:

1/2 T 1,1 —13,1/2
B=My, " (M,,—M M, M M (30)
and therefore is determined by the second order moments.

w)
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Diagonal form of matrix /£ gives possibility to find
transfer matrix R, for the phase space variable W:

C S
W =R,W, sz( N ij GL.1)
Pw w

c - Cospt, 0 e Singt
Y 0 Cosuy) " 0

Phase advances |, connects with functions 5, (27):

u; =1/pB; ,i=12 (32)

As it follows from (31) pairs of phase space variables

(w,w3) and (wy,wy) form two independent

2D subspaces of the whole four-dimensional phase space.

By using expressions (31) the orthogonal matrix Oy

(25) may be defined as Q, = QWRWQVTVO and transfer
matrix R (17), (25) has the following form:

T -1
R= TQWRWQWO TO

SinﬂzJ (31.2)

(32)

MOMENTUM SPREAD

The momentum spread may be taking into account by
introducing new phase space variable

YpT=(x1,x2,x1',x2',5)=(YT,5), where 0=Ap/p is

relative deviation of particle momentum from average
value. Vector Y, satisfies to equation:

Y, =AY A—O > 2—100 33
p — “pip P_bp ap _010 ()

Here b, is 3x2 rectangular matrix and a,, is 3x3 matrix.

In this case we may use the system of coordinate (20)
with changing of dimensions of matrix 7 elements. Matrix

t, has the same 2x2 order as in previous case, ¢, is 3x2

rectangular matrix, and ¢, is 3x3 matrix. The equations

for elements of matrix 7 may be found by the same
manner as in previous section:

t, +agt, =Xt (33.1)
be oy, =bt +at, +,00 2 (D (332)
6, +agt, =at, —t, 'S, (33.3)

where a are 2x2 and 3x3 antisymmetric matrices

xp > Gup
correspondingly. As in the previous case matrix 7 is
connected with matrix M of the second order moments by
equality (23). With these definitions vector Y, =T _lYp
satisfies the following equation:

ay, 'z,

~'2) a .

4
Y p= 4, p M1 p 4 p=
v
The transfer matrix R ” has the same form as matrix R

defined by formula (24):
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where (s is the orthogonal matrix of the fifth order. It

may be found by the same manner as in the previous case:

0s=0,Rp00 0 =[Q"’” " ] (36)
0 va
Here O,, and Q,, are rotational matrices of the second
and third order correspondingly giving the following
result of the matrix t;lZ ¢, transformation:
/500
01/5, Oj

The quantities 1/ 5, coincides with the square root of

oL6'21,0,, =( 37)

the eugenvalues of matrix B » defined by the second order
moments:
-1/2 T -1 Tarp—1/2
Bp = MXX Z (MVV _MXVMXX M.XV )Z M.XX (38)

Matrix R, in(36) connects with matrix R,, (31):

o oy [Ce Sw O
g

The phase advances 4, are defined by beta functions
(37) with the help of expressions (32).
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