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Abstract 
 A new Vlasov equilibrium is obtained for a 

periodically twisted ellipse-shaped charged-particle beam 
in a non-axisymmetric periodic permanent magnetic 
focusing field. The equilibrium distribution function is 
derived, and the statistical properties of the beam 
equilibrium are studied. The generalized envelope 
equations derived from the kinetic theory recovers the 
generalized envelope equations obtained in the cold-fluid 
theory when the temperature is taken to be zero. 
Examples of periodically twisted elliptic beam 
equilibrium are presented and applications are explored. 

INTRODUCTION 
A fundamental understanding of the kinetic equilibrium 

and stability properties of high-intensity electron and ion  
beams in periodic focusing fields plays a central role in 
the design and operation of particle accelerators, such as 
storage rings and rf and induction linacs, as well as 
vacuum electron devices, such as klystrons and traveling-
wave tubes with periodic permanent magnet (PPM) 
focusing. There are two well-known equilibria for 
periodically focused intense beams, namely, the 
Kapchinskij-Vladmirskij equilibrium [1], [2] in an 
alternating-gradient quadrupole magnetic focusing field 
and the periodically focused rigid-rotor Vlasov 
equilibrium [3] in a periodic solenoid magnetic focusing 
field. More generally, self-consistent beam distributions 
can be constructed with linear focusing forces as 
discussed in Ref. [4]. 

In this paper, it is shown that there exists a Vlasov 
equilibrium for a periodically twisted large-aspect-ratio 
intense charged-particle beam with a uniform density in 
the transverse direction propagating through a non-
axisymmetric periodic magnetic focusing field.  

VLASOV EQUILIBRIUM THEORY  
We consider an ellipse-shaped, continuous, intense 

charged-particle beam of major axis a  and minor axis b   
propagating with constant axial velocity zbceβ  through 
an applied non-axisymmetic periodic magnetic focusing 
field. The applied non-axisymmetic periodic magnetic 
focusing field inside a thin beam with 1622

0 <<ak x  and 

1622
0 <<bk y  can be approximated by 
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The associated magnetic vector potential can be expressed 
as extA ( )( ) 2
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gives extext AB ×∇= . 
To determine the self-electric and self-magnetic fields 

of the elliptic beam self-consistently, we assume that the 
density profile of the beam is uniform inside the beam 
boundary, i.e., 
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In Eq. (2), ( )[ ] ( )[ ]sysxx θθ sincos~ +=  and =y~  
( )[ ]sx θsin− ( )[ ]sy θcos+  are the twisted coordinates as 

illustrated in Fig. 1. The semi-major  and  semi-minor 
axes have the same periodicity 02 kS π=  as the applied 
magnetic field, i.e., ( ) ( )Ssasa +=  and ( ) ( )Ssbsb += . 

( ) const,, == ∫
∞

∞−
dxdysyxnN bb  is the number of 

particles per unit axial length. In the paraxial 
approximation, the Budker parameter of the beam is 
assumed to be small, i.e., bb mcNq γ<<22 , and the 
transverse kinetic energy of a beam particle is assumed to 
be small compared with its axial kinetic energy. Here, c  

is the speed of light in vacuo, ( ) 2121
−

−= bb βγ  is the 
relativistic mass factor, q  and m  are the particle charge 
and rest mass, respectively. 

From the equilibrium Maxwell equations, the self-
electric and self-magnetic fields are well known for an 
elliptical beam [5] with density distribution specified in 
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Figure 1: Laboratory and twisted coordinate systems. 
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Eq. (2), i.e., selfself φ−∇=E  and selfself AB ×∇=  with 

( ) ( )syxAsyx zb ,~,~,~,~ self1self −= βφ    
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and ( ) ( ) zz syxAsyx eA ,~,~,~,~ selfself =  for 2222 ~~ byax +  
1≤ . 
In the paraxial approximation, the transverse motion for 

an individual particle in the combined self fields and 
applied magnetic field is described by the normalized 
transverse Hamiltonian 2ˆ mcHH bbβγ⊥⊥ = ,  
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In Eq. (4), ( )xPx,  and ( )yPy,  are canonical conjugate 

pairs, 22322 mcNqK bb βγ= is the self-field perveance, 

( ) ( ) 22 mcsqBs bbzz βγκ = , and the normalized 
transverse canonical momentum ( )yx PP ,=⊥P  is related 
to the transverse mechanical momentum ⊥p  by 

( ) ( )cqmcbb
ext1
⊥⊥

−
⊥ += ApP βγ .  
It is convenient to transform the Hamiltonian from the 

Cartesian canonical variables to new canonical variables, 
so that the new Hamiltonian assumes a simpler form from 
which the invariants of the motion are easily identified. 
The transformation of the Hamiltonian from the Cartesian 
canonical variables ( )yx PPyx ,,,   to the new canonical 
variables ( )1111 ,,, yx PPyx  can be obtained by successive 
applications of the generating functions [6] 
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In Eqs. (5) and (6) prime denotes derivative with respect 
to s , ( ) ( )[ ] ( ) ( ) 2

0
2
0

2
0 22sin kkksssC xyz −= κθ , the 

constant 0>Tε  is an effective emittance, and ( )sa  and 
( )sb  are the periodic functions solving the envelope 

equations 
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The twisted angle solves the differential equation 
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are the rotational flow velocities as defined in Eqs. (10)  
and (11) in Ref. [5]. The envelope equations (7)-(9) can 
be written in a form similar to the generalized envelope 
equations in the cold-fluid equilibrium theory by 
substituting ( ) =sC ( )[ ] ( ) ( ) 2

0
2
0

2
0 22sin kkkss xyz −κθ  and 

Eqs. (10)-(11) into Eqs. (7) and (8). They are identical to 
the generalized envelope equations of ( )sa , ( )sb  and 

( )sθ  in the cold-fluid equilibrium theory, except that the 
thermal emittance terms that appear on the right hand side 
of Eqs. (7) and (8) are zero in the cold-fluid equilibrium 
theory.  

It follows that the Hamiltonian in the canonical 
variables ( )1111 ,,, yx PPyx  is then expressed as 
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where we have introduced and demanded ( ) ≡dssdϕ  
( ) ( ) ( ){ }xssasb αθ −′ ( ) ( ) ( ){ }yssbsa αθ −′= . It is readily 

shown that 2
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2
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1 yx PPyx +++=Ε  is an exact single-

particle constant of the motion for the Hamiltonian in Eq. 
(12). In the reminder of this section, we consider the 
following trial choice of the Vlasov equilibrium 
distribution function  
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where 0=dsdfb , 0const >=Tε  is an effective 
emittance, and ( )xδ  is the Dirac δ  function. Because the 

quantity 2
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the distribution function defined in Eq. (13) is indeed a 
Vlasov equilibrium, i.e., 0=∂∂ sfb . 

STATISTICAL PROPERTIES 
The distribution described in Eq. (13) has the following 

statistical properties. First, the density profile is consistent 
with the assumed density in Eq. (2), i.e., ( )= ,~,~ syxnb  

( ) ( )[ ] ∫∫−
11

1
yxT dPfdPsbsaε ( ) ( )sbsaNb π=  inside the 

beam boundary. 
Second, in the normalized units, the average 

(macroscopic flow) transverse velocity of the beam 
equilibrium described by Eq. (13) is given in the twisted 
coordinates by ( ) ( )[ ] 11

1 ~~
yxbT dPfdPsbsan ∫ ⊥

−
⊥ = vV ε  or 

( ) ( ) yyxx xbbyyaax ~~ ~~~~~ eeV αα +′+−′=⊥ .      (14) 

The flow velocity in Eq. (14) is identical to the flow 
velocity derived by the cold-fluid theory [5]. 

As a third statistical property, the beam equilibrium has 
the effective transverse temperature profile  
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As the fourth property, the 4 times the rms emittance of 
the beam in the twisted frame is ( ) 14 −= cbth βε  

( ) Txx Vvx ε=−×
22 ~~~ . 

Finally, the Vlasov elliptic beam equilibrium has two 
limiting cases which are well know. It recovers the 
familiar rigid-rotor Vlasov equilibrium [3] by setting the 
major-axis equal to the minor-axis of the beam ellipse. It 
also recovers the familiar constant-radius, uniform-
density rigid-rotor Valsov equilibrium [2] by taking the 
limit of a uniform magnetic field with const.== BBz  

EXAMPLE 
As an example, we consider a relativistic elliptic beam 
with 5.198=bV keV , current 5.85=bI A, aspect ratio 

5=ba , and non-axisymmetric periodic permanent 
magnet focusing with 4.20 =B kG , 2.2=S cm , and 

52.100 =xy kk . [We propose to use it in a 10 MW L-
Band ribbon-beam klystron (RBK) for the International 
Linear Collider (ILC).] For such a system the matched 
solution of the generalized envelope equations (7)-(11) is 
calculated numerically with the corresponding  
parameters: 57.10 =xk  1cm− , 0.7320 =zκ 1cm− , and 

21013.1 −×=K . As shown in Fig. 2, the solid lines 
represent the beam semi-axis envelopes with zero 
temperature which is corresponding to a cold beam, while 
the dashed lines represent the beam envelopes and twisted 
angles with 5 keV on-axis temperature. 
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Figure 2: Plots of (a) envelopes ( )sa  and ( )sb  versus the 
axial distance s  for the relativistic twisted elliptic beam. 

SUMMARY 
The single-particle Hamiltonian of a periodically 

twisted large-aspect-ratio elliptic beam in a non-
axisymmetric periodic magnetic focusing field has been 
investigated. A new constant of motion has been found 
such that the self-consistent beam equilibrium can be 
constructed as a function of the constant of motion. The 
beam envelope equations and flow velocity equations 
have been derived. They are consistent with the 
generalized envelope equations derived from the cold-
fluid equilibrium theory [5] when the temperature is taken 
to be zero. Statistical properties of the present Vlasov 
elliptic beam equilibrium have been studied. For current 
applications of interest, the temperature effects have been 
found to be small on periodically twisted large-aspect-
ratio elliptic beams. 
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