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Abstract

A time domain dynamic modeling and simulation tool
for beam-cavity interactions in LER and HER rings at PEP
II are presented. The motivation for this tool is to explore
the stability margins and performance limits of PEP II RF
systems at higher currents and upgraded RF configurations.
It also serves as test bed for new control algorithms and can
define the ultimate limits of the architecture.

The time domain program captures the dynamical be-
havior of the beam-cavity-LLRF interaction based on a re-
duced model. The ring current is represented by macro-
bunches. Multiple RF stations in the ring are represented
via one or two macro-cavities. Each macro-cavity captures
the overall behavior of all the 2 or 4 cavity RF stations.
Station models include nonlinear elements in the klystron
and signal processing. This allows modeling the principal
longitudinal impedance control loops interacting with the
longitudinal beam model.

Validation of simulation tool is in progress by compar-
ing the measured growth rates for both LER and HER
rings with simulation results. The simulated behavior of
LER at high currents is presented comparing different con-
trol strategies and the effect of non-linear klystrons in the
growth rates.

SYSTEM AND MODEL DESCRIPTION

The PEP-II RF stations comprise 1.2 MW 476 MHz
klystrons with either 2 or 4 normal-conducting RF cavities
with HOM dampers [1]. The LLRF systems include comb
(a second order IIR filter) and direct loop feedback paths
to reduce cavity impedances seen by the beam. Despite
the LLRF feedback, the beam exhibits low mode coupled-
bunch instabilities at operating currents due to the funda-
mental impedance, and a special ”woofer” feedback chan-
nel is required to control low mode instabilities [2]. The
stations also incorporate numerous slow regulating loops
which control cavity tuners, HV power supply voltage,
compensate for gap transient effects, etc. [1]. The sys-
tem described is depicted in the simplified block diagram
in Fig. 1.

The simulation is focused on understanding the dynamic
interaction among the beam, the cavities and the fast LLRF
feedback loops. This tool is developed as a block diagram
in Simulink, which uses the system parameters calculated
in Matlab [3]. The simulation is an update of a previous
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Figure 1: Simplified System Block Diagram. Transfer
Function measured between I(nput) & O(utput).

work developed by Rich Tighe [4]. To optimize computa-
tion time and complexity only elements in Fig. 1 with dy-
namics in the order of the low-order mode beam dynamics
are included. Slow feedback and control systems are con-
sidered as constant, defining the operation point of the sys-
tem in the time frame where the simulation is performed.
The particle beam is represented via a variable number of
macrobunches comparable to the comb samples per turn,
rather than the 1746 physical bunches, which fully resolves
the low frequency beam modes (e.g. modes: -18 to 17, for
the 36 macrobunch case) and interactions with the RF fun-
damental impedance.

Growth rates depend on the real part of the effective
impedance presented to the beam by all the RF cavities in-
cluded in the ring [5]. The growth rate corresponding to the
lth characteristic beam mode is given by

σl = R(Λl) = −dr +
παef2

rfI0

E0hωs
R(Z‖eff(lω0 +ωs)), (1)

whereR(Z‖eff(ω)) represents the effective impedance pre-
sented by all the stations to the beam. Detailed models
of klystrons, including non-linearities and the frequency
response, were considered to analyze both the limits in
growth rate reduction due to the feedback system and dis-
crepancies between stations. The simulation can be used to
predict stability in future operation points, as well as study
the effectiveness of possible additions and modifications to
the RF stations.

The simulation models the RF signals in baseband and
uses the in-phase/quadrature formalism to represent them.
The fast feedback loops at each RF station modify the cav-
ity impedance as

Z
‖eff
i (ω) = (I + G(ω)H(ω))−1Zsti

(ω), (2)

where G(ω)H(ω) corresponds to the return ratio of the sta-
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tion. Parameters in the control loops and the stations define
the frequency response of the system.

RF CAVITY IMPEDANCE CONTROL

Eq. 1 expresses the particle beam stability whereas the
term in parentheses of Eq. 2 corresponds to the stability of
the RF feedback loops. The LLRF station feedback param-
eters (direct and comb loop gain and phase) are optimized
to minimize the overall station impedance Z

‖eff
i (lω0 + ωs)

at frequencies lω0 + ωs, corresponding to the beam pertur-
bation, compatible with stability performance criteria for
the RF loops (e.g. gain/phase margins). In PEP-II op-
erations they are calculated using a non invasive method
that starts with the identification of the transfer function of
each station [6]. A similar method is used in the simulation
to adjust the parameters of the macrostation. To achieve
good agreement between the simulation and the physical
system, it is important to define in the simulation an ef-
fective impedance interacting with the beam equal to the
real impedance presented by the RF stations to the beam.
From (1) and (2), it is important to observe that this is possi-
ble only if there is agreement between the transfer function
measured per station and the transfer function and return
ratio defined in the simulation.

Since the transfer function relationship tracks the growth
rate consistency, it is reasonable to use the transfer func-
tions for verifying the simulation model. This was done for
different operating points, but the analysis below is in LER
at 1400 mA. The transfer function is measured by playing a
noise file in the input and reading the response at the output
as marked in Fig. 1. The time domain simulation includes
klystron non-linearities and frequency response. In Fig. 2
and Fig. 3 the collected data are shown in red for measured
and simulated transfer functions respectively. These are fit-
ted to the same 5 parameter linear system model [6] shown
in green. The value of the model is to compare the resulting
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Figure 2: Transfer Function and parameters of operating
station in LER at 1400 mA.

sets of parameters extracted from the physical system and
simulation; thus, providing evidence of convergence. From
these figures we can clearly see the agreement between the
data and fit, which shows the accuracy of the fitting tools.
The measured and simulated transfer functions as well as
the fitted parameters are very close, providing confidence
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Figure 3: Transfer Function and parameters of macrosta-
tion from non-linear simulation in LER at 1400 mA.

that the growth rates will also be comparable. The small
discrepancies can be attributed it to parasitic coupling be-
tween the in-phase and quadrature components to be ana-
lyzed in a subsequent publication.

It is important to note that the klystron frequency re-
sponses are different among physical stations. One result
of the simulation was to show that the growth rates are very
sensitive to these variations. Thus, either the growth rates
have to be computed for each station and averaged or a
macroklystron has to be developed that will represent the
whole ring. The later case is presented.

GROWTH RATE MEASUREMENTS

The essential measurements from the simulation are the
modal growth rates since these are used to determine beam
stability. The system is perturbed from equilibrium and
the beam modes evolve in time. In PEP-II operations the
modal growth rates are estimated via grow/damp experi-
ments opening the longitudinal feedback loop [7]. Sim-
ilarly in the simulation, we let the beam modes evolve
and study the interaction between the RF station and the
beam [2]. To achieve consistency between the physical
system and the simulation, the same growth rate extrac-
tion tools are used to determine the growth rates in each
case. For the simulation case, the growth rates are then
compared to the expected damping rates from the longi-
tudinal feedback loop, providing a quantitative measure
of stability margins for each mode, in contrast to earlier
work [4]. The natural complex frequency, whose real part
corresponds to the growth rate and the imaginary to the os-
cillation frequency, is fitted to the evolving modes (shown
on the left in Fig. 4). Thus, we differentiate between sta-
ble/unstable modes and can select the beam mode with the
highest growth rate. The growth rates for modes -10 to 10
and their oscillation frequencies can be seen on the right in
Fig. 4 for LER at 2500 mA. Modes -3 to -5 are usually the
most unstable modes due to cavity detuning with increas-
ing beam current. Fig. 5 compares the growth rates from
the physical system and the simulation for both the macro-
station and the individual station (due to different klystron
responses) at 1400 and 2500 mA. The simulation not only
reproduces the form of the most unstable growth rates for
various beam currents, but it also agrees with the physi-
cal system in the number of that most unstable mode. The
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Figure 4: Low Frequency Beam Modes (LER at 2500 mA).

discrepancy at low currents will be investigated conducting
dedicated measurements on the physical system.
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Figure 5: Measured and Simulated Growth Rates (Simu-
lated for each station as well as the macroklystron). Ex-
trapolated GRs are dashed. Most unstable mode is −3.

APPLICATIONS AND PREDICTIONS

The value of this simulation tool is the ability to study
the effect of different parameters in the stability and perfor-
mance of the system without requiring time from the real
machine. Additionally, simulations allow analysis of dif-
ferent system configurations and parameter combinations
that are not directly applicable to the physical machine
without major changes. These studies have helped to un-
derstand the sensitivity of the growth rates on certain pa-
rameters included in the control loops.

An example is the study of the impact of the comb filter
phase rotation on the growth rates. The original criterium
used to configure the direct and comb loops was to maxi-
mize the stability margin (gain and phase margins) of the
RF feedback loop. The studies showed that this criterium
comes with a tradeoff to the growth rates. We now under-
stand that achieving great improvement in the growth rates
with a relatively small reduction of the stability margin is
possible. Details of this study are summarized in Fig. 6,
where the growth rate of the dominant unstable mode is
plotted versus the comb filter phase rotation. This plot
combine simulation results with the average growth rate
measured from the LER ring operating at 1400 mA. The
comb filter phase of 0o is defined by the maximum stabil-
ity margin criterium. These results have already been ap-
plied allowing increased beam stability margin. The con-
sistency of the error margin between measured and esti-
mated growth rates give a certain confidence to predict the
growth rates of the machine at higher currents. Growth
rates at higher currents are calculated by simulation and
depicted in Fig. 5. The dashed lines show the prediction
at beam currents larger than 2500 mA in the LER ring.
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Figure 6: Measured and simulated growth rates vs. comb
phase rotation. Agreement in both the general form and
most unstable mode number.

These numbers can be compared to the expected damping
rates for the corresponding operation point [2] and provide
a sense for the stability of the beam at those higher currents.

CONCLUSIONS

The simulation of the PEP-II rings is a close representa-
tion of the actual system. As such, it can predict the perfor-
mance limits of the LLRF systems at higher currents and
study the effectiveness of upgrades or their optimal config-
urations. It also provides insight of the system and sug-
gestions for optimal tuning, as with the comb rotation, the
analysis of the effect of the variations in the klystron re-
sponses as well as the ability to separate the stability of the
particle beam from that of the LLRF. There are many fur-
ther applications after the presented verification which will
be studied in the future.

One of the important features of this tool is the adapt-
ability to simulate the interaction between the RF stations
and the beam for other systems. The interaction between
the different parts of the algorithm and Simulink is through
a parameter structure, which can be easily modified. Thus,
the simulation was easily adapted to be used for modeling
SPEAR to study Robinson instability and it was also mod-
ified to help with the design of the Klystron Linearizer [8].
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