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Abstract 
The radiation of the charged particles bunch which is 

moving along the axis of toroidal cavity cross section is 
considered. The toroidal cavity has a finite value of the 
quality factor and is filled with special symmetry 
inhomogeneous dielectric medium. The problem’s 
solution is based on the complete set of the toroidal 
cavity’s own modes being defined strictly for the 
mentioned dielectric medium the cavity is filled with. The 
charged particles bunch exists in the cavity during a finite 
time period and the charged bunch’s arising and 
vanishing effects are examined and are taken into account 
as well. The toroidal cavity is considered as a convenient 
model to investigate the electromagnetic properties of the 
tokamak system, using the defined modes. 

INTRODUCTION 
Toroidal cavities represent interest in many aspects of 

physics. First of all, they are interesting as merely a 
radiotechnic module, then – as a simple model of a 
circular accelerator, as a synchrotron radiation source and, 
what is most important today, toroidal cavity is a 
convenient model of a tokamak system [1]. 

Toroidal cavity can be described in different systems of 
coordinates, particularly, in [2] the problem is considered 
in the natural system of coordinates, in [3-5] – in quasi-
spherical and in [6-7] – in toroidal systems. But in all of 
these systems it is not possible to separate variables in the 
wave equation (only longitudinal variable is separated), 
and hence, can’t be determined the own functions of the 
toroid analytically. For this reason there are different 
asymptotic methods to define the own frequencies and 
own functions of the toroid.  

But in this paper we will not consider any of these 
methods. We will follow the papers [6-7] where the 
problem of eigenvalues and eigenfunctions is considered 
in toroidal system of coordinates and the variable 
separation can be achieved by filling the toroid by an 
inhomogeneous dielectric medium of a definite type, 
which has a cylindrical symmetry.  

The toroidal coordinates ),,( ϕστ  are connected with 
the Cartesian coordinates by the following formula: 
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In this system of coordinates the given toroid is defined 
from the equation 

1τ=τ ,                                 (2) 

where 1τ  represents toroid with the radius 1cth τ= aR  
and the cross-section radius. 1sh τ= ar . a is a constant 
that describes the toroidal system. 

As it is shown in [6-7] that if we represent the 
electromagnetic field in the following form 
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where ...,2,1,0=m , then if the field in the toroid we 
separate to E-type ( 0,0 =≠ ϕϕ HE ) and H-type 

( 0,0 ≠= ϕϕ HE ) of waves, then we will get all the 
transverse coordinates of the toroid, expressed by the 
longitudinal component of electric or magnetic fields, i.e. 
the analytical expressions for E and H types of waves 
with the corresponding boundary conditions. 

For the longitudinal component we get an equation in 
which the variables can’t be separated analytically. But if 
we consider that the toroid is filled by an inhomogeneous 
medium of the form 
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where σ−τ=στ= cos),( chhh , then the variables can be 
separated and we get the own functions of the toroid: 
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In these solutions the functions ( )τEf  and )(τHf  
satisfy differential equations of the second order and 
when 0=ka , they both become the equation of the torus 
functions [8]. These equations can’t be solved analytically 
and hence, one must look for digital methods of the 
solutions. 

As it is shown in [7], both the functions ϕE  and ϕH  

are orthogonal. The function ϕE  is orthogonal with a 
weight ε , where ε  is the dielectric medium the toroid is 
filled with, and the function ϕH  is orthogonal with a 
weight 1. 

As the own functions of the toroid are orthogonal, it 
means that one can expand any physical amount in the 
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toroid by a series of these functions. Using this property 
we will discuss the radiation problem of a charged 
particle in the toroid in next chapter. 

THE RADIATION PROBLEM IN THE 
TOROIDAL CAVITY 

Let the charged particle (electron) moves along the 
cross-section axis of the toroid at a constant velocity 

ϕ= vv . We consider again that the toroid is filled with 
inhomogeneous medium (4). The external magnetic field 

0H  keeps the particle on the given orbit with the Larmor 
frequency 
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where e and em  are the charge and the mass of the 
particle respectively, and γ  is the Lorenz-factor. 

The radius of the orbit coincides with the radius of the 
toroid 1cth τ= aR . If the particle is injected the toroid at 
the moment of time 0=t  to the point with the 
coordinates ),,( 000 ϕστ , then the current ϕj  will have 
the form  
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In this case the function will have the following form: 
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From the Maxwell equations one can get the equation 
for the function in the toroidal system of coordinates: 
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The solution of this equation will be done expanding 
the field and the current to a series by the own functions: 
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If we consider that the particle moves in the toroid for a 
period, we will get: 

)1])((exp[v)( −Ω−ω
Ω−ω

Ω−=ωϕ Tmi
m

Ceij pm .                (12) 

From the equations (11)-(12) we get: 

).1])((exp[
))()((

)1v(4)( 2

2

−Ω−ω
Ω−ωω+ωω−ω

ω×

×
εβ

−βπ−=ωϕ

Tmi
m

CeE

pmpm

pm

 (13) 

If the toroidal cavity had ideal conducting walls, then its 
quality factor would be infinite, and the own oscillations 
would have infinite narrow width of frequencies. But each 
real system has a finite conductivity of walls, i.e. the 
spectral lines of the frequencies have a finite width 

pmpmpm Qω=ωΔ , where p and m are the numbers of 

modes, pmω  are the own frequencies, pmQ  - the quality 
factor of the cavity corresponding to a given mode. In this 
kind of cavity the structure of the field will not change, 
i.e. will be described by the expressions of an ideal cavity 
[9]. 

We need to define the time dependence of the field. 
Replacing (13) to integral 
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we see that when ,the amplitude of the field diverges 
conditioned by choice of ideal cavity, whereas in reality, 
the amplitude of the field must increase, staying finite. In 
this case only modes p and m in the cavity will excited. 
The existence of the quality factor will bring to the 
broadening of the spectral lines. Because of the fading the 
frequencies will have an imaginary part, expressed by the 
quality factor: 
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In this case (13) will have the following form: 
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Inserting (16) into (14) one can see that the function 
under the integral has singularity in the form of simple 
poles on the frequencies η−ω=ω ipm , η+ω−=ω ipm , 

Ω=ω m . The contour of the integration will be chosen in 
the lower half plane. In that case in the integral of Koshi 
only the poles η−ω=ω ipm  and Ω=ω m  will contribute. 

Calculating the integral one can get the following 
solution, when Ω≠ω mpm : 
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When the rotation frequency of the particle coincides 
with the one of the own frequencies ( Ω→ω mpm ),  we 
will get: 
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Replacing the form of η , one can get:  
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As it is seen from (19), when Ωω mpm ~ , the amplitude 
of the field increases, proportionally to a quality factor Q. 
If the energy is injected to a cavity form of a 
monochromatic wave with a frequency coinciding with 
one of the own frequencies )( pmm ω=Ω , then the 
voltage of the field, corresponding to that frequency, first 
of all, when pmQt ω<< 2 , will increase with a linear 

rule, proportional to a time t, and when pmQt ω>> 2 , it 
will increase, proportionally to a quality factor Q [10]: 
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A dynamic balance will be created in the cavity, i.e. the 
further gain of the voltage will be compensated by the 
loss in the walls. In the cavities with ideal conducting 
walls the voltage of the field will increase infinitely 

during the infinite period of time, which is impossible 
from the point of view of physics. 

At the time Tt =  the particle flies from the cavity, 
hence as it can be seen from (20), at the times Tt >>  the 
voltage of the field will decrease and will fade: 

0e)( →ωω ω−
ϕ∫ dE tipm .                                               (21) 
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