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Abstract

The behaviour of an SCL module is generally described
resorting to an equation system borrowed from lumped cir-
cuit theories. This description holds for a narrow frequency
band (mono-modal cavity behaviour). A milestone in this
field is represented by the classical analysis made by Nagle
& alii where they introduced an equation system allowing
for the resonant frequencies of the cavities and the first and
second order coupling constants. Eigenvalues and eigen-
vectors (resonant frequencies of the system and relevant
current amplitudes) are also given. For the case of half-cell
termination and non zero second order coupling constants,
we show that the system, even if it is correct for on axis
cavities, should not be taken unwisely. If not so, troubles
will come from the first two and last two equations of the
system. Due to the relevance of this formulation and of
the case treated, we give an interpretation of the physical
meaning of these equations and suggest the correct use of
above mentioned system. We will suggest a measurement
(numerical and/or experimental) procedure which may give
accurate evaluation of the parameters of the lumped circuit
representation. By doing so the use of the circuit represen-
tation will be put on firm basis.

A thorough investigation was made on the accuracy of
the parameters estimation due to measurement errors and
fabrication tolerances.

INTRODUCTION

A Side Coupled Linac (SCL) is formed by a certain num-
ber of Accelerating Cavities (AC) on axis with the trav-
eling particles coupled with a certain number of off-axis
Coupling Cavities (CC). When the cavities are assembled,
they loose their individuality and the whole system can res-
onate at frequencies each one characterized by its own field
phase advance from cavity to cavity. A simple analogy was
drawn [1] between a chain of coupled cavities and a chain
of masses supported by springs or of atoms bound in a lat-
tice: in the case of N identical coupled resonator chain,
the whole system exhibits a comb of N resonant frequen-
cies, each characterized by its own phase advance (modes).
These modes have the same field configuration and this be-
haviour will allow to deal the system by means of a lumped
circuit model. In the case of an SCL it is possible to rep-
resent the total structure as a biperiodic chain of resonant
circuits. The first chain is formed by the AC cavities, cou-
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pled with the nearest neighbors (CC) and with the second
nearest neighbors (AC); the second chain is formed by the
CC cavities coupled with the nearest neighbors (AC) and
with the second nearest neighbors (CC).

The lumped circuit representation for such a structures
is very powerful since it gives a full and exact characteri-
zation of the behaviour of a coupled system without using
the more complex field equations. This allows for build-
ing home-made codes able to study and to characterize in a
simpler and faster way these devices. These codes becomes
very useful tools in the SCL designing, testing and tuning
phases [2, 3, 4].

THE COUPLED RESONATOR MODEL
FOR A BIPERIODIC CHAIN

Let us examine the circuit equation in ref. [1] and its
solutions (26) and (27) in the lossless case for the half-cell
terminated chain. The above mentioned solutions, when
introduced into the circuit equations, lead the well known
dispersion relation (28) of the above quoted paper.

Let us explicitly re-write the equation for n = 0, 1
(
1− f2

a

F 2

)
X0 + k1

2 (X−1 + X1) + ka

2 (X−2 + X2) = 0

(
1− f2

c

F 2

)
X1 + k1

2 (X0 + X2) + kc

2 (X−1 + X3) = 0
(1)

where the quantities X’s are the currents in the equivalent
circuit. Even if the circuit stops at the half cell n = 0,
the currents X−1 and X−2 have a deep meaning. Indeed
the half-cell termination is realized by means of a perfect
conducting plate which acts as a mirror of the whole chain.
This means that one should take into account also the vir-
tual currents which are the images of the real ones. Because
of the boundary conditions, these currents are just equal to
the ones with the index of positive sign: X−1 = X1 and
X−2 = X2. So that the equations becomes

(
1− f2

a

F 2

)
X0 + k1X1 + kaX2 = 0

(
1− f2

c

F 2 + kc

2

)
X1 + k1

2 (X0 + X2) + kc

2 X3 = 0.

(2)
One can verify that the above representation of the cir-

cuit behaviour satisfies the dispersion relation (28) of the
ref. [1]. These equations are certainly correct for a struc-
ture with all the cavities on axis. For a Side Coupled Linac
formed by coupling cavities off axis with alternating offset
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one has to carefully consider the mirror images. Indeed,

Figure 1: SCL formed by coupling cavities off axis with
alternating offset.

if the half cell configuration stops with an halved accelera-
ting cavity, the mirror image is not the correct continuation
of the cavity chain because, as one may see from Fig. 1,
the periodicity of the structure is broken. This has the im-
portant consequence that the second order coupling coeffi-
cients between cell number 1 and its image cell, number -1,
is no longer equal to the constant kc, which was defined for
the periodic structure, but it is transformed in a new con-
stant that we name k′c. Its value will be closer to ka rather
than to kc; namely, may be, almost one order of magnitude
larger. The second line of the equation (2) becomes then

(
1− f2

a

F 2
+

k′c
2

)
X1 +

k1

2
(X0 + X2) +

kc

2
X3 = 0. (3)

From this we may infer that the dispersion relation eq.
(28) of ref. [1] is no longer satisfied as well as the eigen-
vectors do not satisfy the eq (27) of the same reference.
In order to get the real dispersion relation we just have to
resort to the system determinant equated to zero.

This situation does not happen if the p.e.c. mirror is
placed in the CC’s. Indeed, in this case, the replica does
not break the periodicity. Therefore we may state that a
half cell structure with CC’s in the ends is representative of
an infinite structure. Indeed this structure will exhibit the
values of fa, fc, k1, ka and kc as an infinite system.

USEFUL APPLICATIONS

The considerations, done in the previous paragraph, have
extremely important consequences for numerical and ex-
perimental measurements.

Let us consider a structure as in Fig. 2 with two half
AC end cells. One can easily realize that, because of the
additional mirroring the currents X3 and X4 are equal to
X1 and X0 respectively. Furthermore also the constant kc

of the eq. (2) goes to k ′c. Therefore the lumped circuit

Figure 2: Three cell structure half AC cell ended.

equation system is the following:
(
1− f2

a

F 2

)
X0 + k1X1 + kaX2 = 0

(
1− f2

c

F 2 + k′c

)
X1 + k1

2 (X0 + X2) = 0

(
1− f2

a

F 2

)
X2 + k1X1 + kaX0 = 0.

(4)

The dispersion relation is given by solving the following
equation:

∥∥∥∥∥∥

αa

2
k1
2

ka

2
k1
2 αc + k′c

k1
2

ka

2
k1
2

αa

2

∥∥∥∥∥∥
= 0 (5)

where αa,c ≡
[
1−

(
fa,c

F

)2
]

with fa,c stands for the reso-

nant frequency of the AC and CC cells.
Let us define the following quantities

⎧⎨
⎩

f̃2
a = f2

a/(1 + ka)
f̃2

c = f2
c /(1 + k′c)

k̃ = k2
1/[(1 + ka)(1 + k′c)]

(6)

The solutions of the above eq. (5) are
⎧
⎨
⎩

1
F 2

0
= 1−ka

f2
a

1
F 2
∓

= 1
2 (S ±

√
D2 + 4k̃f̃a

−2
f̃c

−2
)

(7)

with S = f̃c
−2

+ f̃a
−2

while D = f̃c
−2 − f̃a

−2
.

It is worth noting that the frequencies F−, F0 and F+

are known quantities by means of real or numerical mea-
surements, while fa, fc, k1, ka and k′c are the unknowns.
The only way to act, in order to find the unknown terms,
is to make a parametric study of the system as done in ref.
[4]. In this case by varying the value of fc, for instance
by means of the insertion of some pins in order to vary its
inductance, it is possible to find out the wanted quantities.

Let us define the variable y and x

y ≡
(
F−2
− − F−2

+

)2
= D + 4k̃2f̃a

−2
f̃c

−2

x ≡
(
F−2
− + F−2

+

)
= S.

(8)
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Some interesting properties can be drawn from the eq.
(8): the variable y as a function of x is a parabola, its min-
imum coordinates (xmin, ymin) may give useful informa-
tion on the lumped circuit parameters

f̃a
−2

= 1
2

(
ymin + x2

min

)
/xmin

k2
1 = 1

2 (1 + k′c)f
2
a ymin/xmin.

(9)

From the above we readly get ka and fa, but the struc-
ture intrinsically does not allow to get k ′

c. This means that
the exact value of k1 cannot be obtained. However as said
beforehand, setting k ′c = ka, we may get a good estimation
of k1.

Therefore one can realize the following measuring pro-
cedure:

1. vary the CC frequency by means of tuner insertion 1;

2. measure the mode frequencies;

3. plot the points in a cartesian plane: in the ordinate

y ≡
(
F−2
− − F−2

+

)2
and in abscissa x ≡ F−2

− +F−2
+ ;

4. find the best fit of the parabola and evaluate the mini-
mum coordinates.

An identical procedure can be set-up for the complemen-
tary configuration of a central AC and two half CC’s off
axis with opposite offset. In this case the mirroring due to
the p.e.c. plates does not break the periodicity of the sy-
stem, and the second order coupling constants are not per-
turbed. The dispersion relations is always given by the eq.
(5) where it is only to exchange the index a with c and, in
this case it is k′c ≡ kc. A precise evaluation of kc can be
obtained and, combining the two procedures, one can cross
check the value of k1.

NUMERICAL MEASUREMENTS

Two numerical experiments were done.
We allowed for two circuits: the first one as described

in Fig. 2 and the second one its complementary configura-
tion. They have the following parameters, inclusive to the
reactive impedance due to ohmic losses: k1 = 3.406%,
ka = −0.705%, k′c = −0.5%, kc = 0.05%, fa =
3004.57MHz, fc = 2997.75 and Q = 8000. The fre-
quencies fa,c range, by means of a numerical ”tuning”, in
a interval of 19MHz. The circuit is fed in the first cell and
the signal is detected in the last one in a frequency range in-
cluding all the modes. In this way we ”measure” the mode
frequency as indicated in the point 2. In order to simulate
a real measurement, to each value of the mode system was
added a random error in a uniform distribution in the range
[-ΔF , ΔF ]. Then we went on according to the procedure
described in the previous section. We performed a statistics
for a set of N=40 measurements.

The results are given in Fig. 3.

1Note that f0 stays unchanged.

Figure 3: Results of the first numerical experiment.

A similar second numerical experiment was done which
foresaw an unbalance of δf between the two AC’s.

The results are shown in Fig. 4.

Figure 4: Results of the second numerical experiment.

CONCLUSIONS

The results are very interesting: while the values of ka

and fa are acceptable till ΔF ≤ 300kHz, the evaluation
of k1 is always very accurate. It is worth nothing that the
usual experimental error in a network analyzer measure-
ment is in the order of 200kHz. Furthermore the pres-
ence of an asymmetry between the half AC cell frequen-
cies, due to some machining error, gives some values of
the ”measured” quantities on the limits for δf ≤ 2MHz
and ΔF ≤ 200kHz; anyway the value of k1 stays ”exact”
up to values ΔF = 300kHz and δf ≤ 2MHz.

The error analysis suggests that this method is largely
sufficient to have a good estimation of the lumped circuit
parameters.

It is worth noting that the first order coupling constant k1

is the result of the measurement of a minimum and it will
intrinsically have the best accuracy.
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