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Abstract

Previously, linear-field FFAG lattices for muon accelera-
tion have been optimized under the condition of minimum
path length variation. For non-relativistic particles, as are
employed in the hadron therapy of cancer, that constraint
is removed allowing a wider range of design choices. We
adopt the thin-element kick model for a degenerate F0D0
cell composed of D and F combined function magnets. The
dipole field components are parametrised in terms of the
bending at the reference momentum and the reverse bend
angle. The split between positive and negative bending sets
the shape of the closed orbits. The cost function, based on
stored magnetic energy, is explored in terms of the split.
Two cost minima are found, one corresponding to min-
imum peak magnet field in the F element, and another
to minimum radial aperture in the D element. The mini-
mum F-field lattice is similar to existing designs based on
minimizing the path length variation, but the minimum D-
aperture lattice presents a new direction for future studies.
Analytic formulae for the minima are given in Ref. [3].

INTRODUCTION

We shall compare different lattice design strategies for
a non-scaling FFAG made from cells containing combined
function magnets which are alternately horizontally focus-
ing, F, and defocusing, D. We consider choices for the ref-
erence momentum pc, how the bending is shared between
the elements, and what is their effect on the range of the
closed orbits, and peak magnet field, as the momentum is
varied. As a general trend, increasing the reverse bend-
ing in the F will narrow the orbit range, but at the cost of
increased positive bending in the D, and higher magnetic
fields - or more cells and a larger circumference. The case
of positive bending in both D and F is reminiscent of the
cyclotron, which has a large radial aperture.

Kick Model

The kick model was introduced in Refs. [1, 2]. Magnets
are treated as thin elements; and their effects are repre-
sented by angular deflections. We consider a F0D0 cell
with equal drift spaces of length l0 (m). The quadrupole
components of the magnets are denoted by their strengths
(gradient×length) β (T) which are taken to be equal. β are
chosen to satisfy some condition on the betatron tunes.

The bend angles in the D and F elements at momentum
pc are θd and θf respectively. The total bend per half cell
is θ = θd + θf . pc and θf are, in some sense, synonyms
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for the dipole field components on the reference trajectory,
B0d and B0f . Choosing these fields will set the orbit shape
at pc, and influence strongly the off-momentum orbits.

Though the choice of pc alone is arbitary, once θf (and
hence θd) is chosen, one cannot change pc without chang-
ing the shape of the reference orbit; and so the pairs
(pc, θf ) describe distinct1 lattices. We shall consider lat-
tice optimization with respect to variation of pc and θf .

Let the minimum, maximum and mean momenta be p̌, p̂
and p̄ ≡ (p̌+ p̂)/2, respectively. For brevity we write p0 ≡
l0β (T.m) x0 ≡ l0θ (m) and B0 ≡ p̌θ (T.m). x0 and x0θ
are the basic unit of aperture and path length variation. B 0

is the minimum unit of magnetic field integral. We adopt
units wherein charge and speed of light are unity.

Descriptive equations At the reference momentum,
pc, the displacements xd, xf are zero, and the deflections
are θd and θf . At other momenta, the angular deflections
in the D and F elements are respectively:

ψd = [pcθd − βxd]/p , ψf = [pcθf + βxf ]/p , (1)

and these must sum to θ. The closed orbit displacements
and path length variation are:

xd = x0(p− pc)(pθ − p0θd)/p2
0 (2)

xf = x0(p− pc)(pθ + p0θf )/p2
0 , (3)

L = x0(p− pc)[4p0θf − (2p0 − 3p + pc)θ]/p2
0 . (4)

The magnetic field integrals (tesla×metre) are simplyBd ≡
ψd×p andBf ≡ ψf×p. For fixed magnet lengths, the peak
values (as a function of momentum) ofBd,Bf are measures
of the peak magnetic field.

COST MODEL AND MINIMA

We adopt a cost function proportional to magnetic energy:

|Δxd||B̂d|q + |Δxf ||B̂f |q ≡ (5)

(D aperture)×(D peak field)q+(F aperture)×(F peak field)q

The vertical aperture should also be considered; but it is
outside the scope of the kick model. The power-law index
q weights either field or aperture, and normally q = 1.

In lattices with equal integrated quadrupole strength, the
cost is a function of the variable X = pc − l0βθf . The
cost function has been evaluated numerically for a variety
of lattices with momentum ranges spanning a factor of two
to three, and for cell phase advances spanning from 78 ◦

1It is assumed that we use always the same local coordinate systems
for displacements xd and xf . If one changes the measurement origins,
then different pc, θf pairs may describe the same lattice and orbit shapes.
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to 180◦. In every case, the function looks very much like
figure 1 (left). There are two sharp minima: that on the left
corresponds to minimizing the peak field in the F element,
while that at right minimizes the radial aperture in the D
element. The precise conditions for minmizing Bf depend
on the momentum range of the machine.

Superimposed on the cost function are several possible
minimizing conditions (shown as vertical lines), and from
these follow the identification of conditions at the two sharp
minima. The six candidates are minimum D or F apertures,
Δxd,f ; minimum D or F peak field integrals, B̂d,f ; mutual
minimum field integral, |Bd| = |Bf | = Bm; or minimum
path length variation, ΔL. When index q = 1, the abso-
lute minimum (on the right) corresponds to reducing the D
aperture, Δxd. If, however, one believes that technological
issues favour more strongly lower magnetic fields, then q
may be raised. For a momentum range of two (or three)
and index q = 3/2 (or 4/3), the cost function is tipped in
favour of lower peak field in the F element, Bf .
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Figure 1: Left: cost function with conditions (left to right)
to minimize Bd (cyan), mutual minimum field (magenta),
Bf (green), ΔL (red), Δxd (blue), Δxf (gold). Right: path
length versus momentum; same colour coding.

Of potential interest is the condition for minimum path
length variation, shown red, which lies close to the B̂f min-
imum. The customary choice[4], to minimize ΔL, leads
to neither the smallest radial aperture, nor the minimum
peak field, but does yield lattices that have reasonable-
compromise values in both these departments.

The minimum B̂f and ΔL lattices have similar proper-
ties. However, the minimum D aperture latttice, has field
and aperture values far removed and represents a totally
new possibility. Small incremental changes will not change
a ΔL or B̂f lattice into a minimum Δxd lattice. Compared
with the ΔL lattice, the minimum Δxd lattice achieves its
cost minimum by having a slightly higher field but much
reduced aperture in the high field magnet, D.

Lattice Properties

Figure 1-right shows the path length variation for lattices
optimised under four different criteria Δxd,Bf , ΔL,Bm.
For a non-relativistic beam, there is a slight advantage (dis-
advantage) in selecting optimization based on Bf (Δxd),
because it leads to a slight increase (decrease) in path
length versus momentum, implying a slightly reduced (ex-
tended) frequency sweep for the acceleration system, as
compared with optimization based on path length variation.

Figures 2 and 3 show the variation of closed orbits and
magnet fields with momentum, for lattices with equal val-

ues of p0 ≡ l0β but optimized in a variety of ways corre-
sponding to figure 1-Right. The machine has a momentum
range of e ≈ 2.71828. Figures for an alternative machine
with a factor 2.1 momentum range are given in Ref.[3].
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Figure 2: Radial closed orbit versus momentum in D ele-
ment (left) and in F element (right). Colour coding: opti-
mize Δxd (blue), Bf (green), ΔL (red), Bm (magenta).
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Figure 3: Field integral versus momentum in D element
(left) and in F element (right). Colour coding as above.

Comparison of  Scenarios

Table 1 compares the orbit and path length ranges and
the peak/extreme values of the integrated field strengths for
several scenarios. The rows denote different optimizations,
while the columns indicate their results. In the first six rows
the simplifying conditions (p0, p̂) → p̌(1, 2) are employed,
while in the final two rows p̂ → 2.4142p̌. The mutual field
minimum condition is denoted by Bm.

Scenarios which minimize Δxf or B̂d are distant from
the cost minimum because they develop large field values
in the D and F elements, respectively. The most extreme
fields occur in the Δxf optimization; while minimizing Bd

tends to demand large apertures in both D and F elements.
Minimizing B̂f is superior to ΔL because the former leads
to smaller aperture and field in the D magnet.

Table 1: Lattice performance under different strategies
Opti-
mize

Δxd

x0

Δxf

x0

Bd

B0

Bf

B0

ΔL
(x0θ)

ΔL 0.6944 1.250 4.00 −1.50 0.750
Δxd 0.250 1.00 4.50 −2.00 1.333
Δxf 1.00 0.250 8.00 −4.50 5.00
Bd 1.333 2.333 1.333 +5.333 4.333
Bf 0.4444 1.333 3.556 −1.333 0.9259
Bm 0.7018 1.6754 2.702 −2.702 1.842

Bd 2.00 3.4142 2.00 +6.828 6.00
Bf 0.8358 2.00 4.50 −2.00 2.5248

It is disappointing that optimization on B̂d, which pro-
duces the most extreme increase of path length with mo-
mentum (as is desirable for non-relativistic particle accel-
eration), is so far from the cost minimum - because of the
large aperture and large peak field in the F element.
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Conclusion

We have surveyed all aperture and field configurations
possible in the context of a kick-model non-scaling FFAG
degenerate F0D0 lattice; no other cost minima are possible.

For element D alone, or F alone, the two cost minima oc-
cur at the corresponding minimum aperture and peak field;
this is no surprise. The total cost function summed over
D and F elements has also only two minima; these occur
at the separate conditions of minimum D radial aperture,
and minimum magnet field in the F element. Which of
these two minima is the lowest depends on how field is
cost-weighted against aperture.

Lattices optimized on path length are close to the local
cost minium optimized on F magnet field, but there are po-
tential gains to be had when the constraint of equal path
lengths is removed, and lattices optimized based on D ra-
dial aperture, or F peak field, should be pursued.

None of the new lattice types produce a substantial in-
crease in path length with momentum. Thus, for non-
relativistic particles, the change in the orbit frequency, re-
sulting from speed variation, will have to be compensated
by sweeping of the radio-frequency.

OPTIMIZATION

In order to identify what conditions give rise to the min-
ima of Figure 1, it is necessary to have a battery of po-
tential minimizing conditions to compare the cost minima
against. Given that the cost function contains apertures and
peak fields in D and F elements, it is for conditions giving
minima of those quantities that we search for analytically.
As a simple example, we shall minimize the range of path-
length variation, for which known results exist. The practi-
cally important cases of optimizing based on Δxd and Bf ,
and other scenarios, are examined in Ref.[3].

The range of a function (versus momentum) extends be-
tween minima and maxima. It is the range which is to
be minimized versus (pc, θf). The closed orbit displace-
ments (xd, xf ), path length (L) and magnetic field integrals
(Bd,Bf ) each have a local minimum at pi. A priori, we do
not know whether the extrema occur at p̌ or p̂ or at p i; nor
whether pi ∈ [p̌, p̂]. Thus, we have to be cautious.

Let A stand for xd, xf ,L; and i stand for d, f, L. Let the
minium values of xi,L occur at the respective momenta pi.
These values are obtained by setting the derivatives ∂x i/∂p
and ∂L/∂p, equal to zero and solving for the momenta. We
define possible ranges by quantities ΔA12 = A(p̌)−A(pi),

ΔA13 = A(p̌)−A(p̂) , ΔA32 = A(p̂)−A(pi) . (6)

When pi ∈ [p̌, p̂], optimization is based on minimizing

ΔA = Maximum {|ΔA12|, |ΔA13|, |ΔA32|} , (7)

otherwise it is based on ΔA = |ΔA13|.
Let the minium values of magnetic field integral

(Bd,Bf) occur at the momenta pBd, pBf , respectively. We

base field optimization on minimizing

Maximum {|B(p̌)|, |B(pB)|, |B(p̂)|} (8)

where B and pB are shorthands for Bd,Bf and pBd, pBf .

Change of Variables to Fastest Descent

Figure 4 shows a relief plot of the extrema of ΔL versus
(pc, θf ). ΔL is a function of a linear combination of pc and
θf . The next step is to introduce normalized variables by
the substitutions pc → pc × p̌ and θf → θf × θ.

If we take new coordinates (X, Y ) which are obtained
from the old by a rotation, and have one direction aligned
with the steepest ascent/descent, then the search is reduced
to a problem in a single variable. Let D ≡ (p2

0 + p̌2). The
relation between old and new variables is:

pc = (+p̌X + p0Y )/D , θf = (+p̌Y − p0X)/D , (9)

We may rewrite any of the quantities ΔA in terms of the
new variables, and find them to be functions of X alone.

1

1.5

2

2.5
-0.4

-0.2

0

0.2

5
7.5
10

12.5

1

1.5

2

2.5

Figure 4: Range of ΔL as
function of pc and θf .
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Figure 5: Range of path
length versus X .

Minimize Path Length

Figure 5 shows the optimization of ΔL as a function of
X . The minimum occurs at the cusp of falling ΔL32 and
rising ΔL12, that is when |ΔL12| = |ΔL32|, and gives rise
to the condition

X = [3(p̌ + p̂)− 2p0]/4 ≡ (3p̄− p0)/2 . (10)

The minimum range is ΔL = (x0θ)(3/4)(p̌ − p̂)2/p2
0,

which is the anticipated result. The path length minimum
(pL) occurs at the mean momentum p̄ and enforces the
symmetry L(p̌) = L(p̂). A sufficient condition for exis-
tence of the minimum is p̂ > p̌, satisfied trivially.

If we substitute (10) in (9), we find pc and θf to be func-
tions soley of Y , an arbitrary offset. Thus there is a family
of combinations (pc, θf ) that give identical orbit shapes.
The only “difference” between family members are offsets
of the transverse coordinate system.
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