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Abstract

An unusual feature of linear-field nonscaling FFAG de-
signs is that the radio-frequency is not necessarily syn-
chronous with the reference orbit and momentum chosen
for the lattice design. This arises because optics design
prefers the reference geometry to be composed of straight
lines and arcs of circles - either at the mean momentum, or
at high momentum to centre the orbit in the F element. The
asynchronous acceleration proposed for rapid acceleration
has strong requirements to set the longitudinal reference
at 1/4 and 3/4 of the momentum range to minimize phase
slip. The usual particle-tracking programs, such as MAD,
though sophisticated in the transverse plane are far cruder
in their longitudinal working and do not allow for a longi-
tudinal reference momentum and RF phase independent of
the transverse value. In the context of a thin-element lat-
tice model, we show how to make the transverse reference
momentum and optic design coincident with the longitudi-
nal reference by adjusting the ratio of positive and negative
bending in the D and F elements, respectively, and retaining
a lines and arcs composition for the reference orbit. This
prepares the way for completed FFAG designs to be tested
by 6-dimensional particle tracking (including acceleration).

KICK MODEL

We adopt the model, notation and results of Ref.[1] The
lattice consists of drifts and combined-function magnets
whose effects are represented by kicks; these elements
are anchored to a geometrical layout. In the degenerate
F0D0 cell, drifts are of equal length l0 and the integrated
quadrupole strengths are also equal β = B1 × l where
B1 = ∂B/∂r is the field gradient and l is the magnet
half-length. In a half cell, the bend angle at the D and F
elements are θd, θf at the central momentum pc. The total
bend is θd + θf = θ = π/Nc, where Nc is the number of
cells. The angular deflections arising from the kicks are:

ψf = 2[pcθf +βxf ]/p , ψd = 2[pcθd −βxd]/p . (1)

At this point, the transverse reference pc is arbitrary; at pc

the closed orbit displacements xd, xf are identically zero.

Path length and fixed point considerations

The objective is to make the transverse reference mo-
mentum equal to the longitudinal fixed point of the time of
flight (ToF). We assume fully relativistic particles, so ToF
is proportional to path length and speed is independent of
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momentum. For brevity, let p0 ≡ l0β. To second order in
bend angle, the cell path length is:

L(p) = 2l0 +
(p− pc)θ[(3p− pc)θ + 2p0(θf − θd)]

p0β
. (2)

The minimum of the parabola occurs at

p = (2/3)pc + (p0/3)(θd − θf )/θ . (3)

The corresponding minimum path length is

Ľ = 2l0 − [pcθ + p0(θf − θd)]2/(3p0β) . (4)

Let p̌, p̂ be the minimum and maximum longitudinal mo-
menta, respectively. Because of the parabolic form, the
condition to minimize the path length is L(p̌) = L(p̂).

Let ΔE and δE be the total and per cell energy gain. The
longitudinal working point is defined by the parameters

a =
δE

ΔE

1
[ω(δT1 + δT2)]

and b =
δT2

(δT1 + δT2)
. (5)

δT1 and δT2 are the range of ToF above and below, respec-
tively, the longitudinal reference value.

The longitudinal fixed points are given by the condition

L(p)− Ľ = b(L(p̌)− Ľ) , (6)

to be solved for the two momenta pf :

pf = (1±
√

b)[(2/3)pc+(p0/3)(θd−θf )/θ]∓(p̌
√

b) . (7)

We now ask for what values of the reference momentum
pc and the bending angles θd, θf is pc coincident with the
fixed point pf , and the path length variation is minimized.
The solutions are the pairs

2pc = p̂(1±
√

b) + p̌(1∓
√

b) (8)

θf

θd
=

[2p0 − (1∓ 2
√

b)p̂ − (1± 2
√

b)p̌]
[2p0 + (1∓ 2

√
b)p̂ + (1± 2

√
b)p̌]

. (9)

Both solutions are valid. Suppose that we stipulate that
the cell phase advance is 180◦ at injection, in which case
p0 = p̌. The two fixed points become:

2pc1 = p̂(1 +
√

b) + p̌(1−
√

b) , (10)

θf1

θd
=

(1 − 2
√

b)(p̌− p̂)
(3 + 2

√
b)p̌ + (1− 2

√
b)p̂

(11)

2pc2 = p̂(1−
√

b) + p̌(1 +
√

b) , (12)

θf2

θd
=

(1 + 2
√

b)(p̌− p̂)
(3− 2

√
b)p̌ + (1 + 2

√
b)p̂

(13)
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Of these, only the first is solvable for the condition θf = 0,
namely b = 1/4. Thus it is customary to think of the higher
momentum fixed-point (pc1) as the primary and the lower
(pc2) as secondary. The two branches of pc and of θf/θd

are shown in figures 1,2.
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Figure 1: Fixed points pc1

(red) and pc2 (blue) versus b.
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Figure 2: Bend ratios
θf1/θd (red) and θf2/θd

(blue) versus b.

θd, θf may be written soley in terms of θ, the total bend
angle per half cell.

θd1 = [2p0 + (1 + 2
√

b)p̌ + (1− 2
√

b)p̂]θ/(4p0) (14)

θf1 = [2p0 − (1 + 2
√

b)p̌− (1− 2
√

b)p̂]θ/(4p0) . (15)

These solutions are shown in figure 3. Most of the bend-
ing occurs in the D element, which must be a combined
function magnet, whereas the F element could be an offset
quadrupole magnet.
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Figure 3: Bend angle ratios
θf1/θ (red) and θd1/θ (blue)
versus b.
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Figure 4: Working point b
versus cell tune, under con-
dition θf = 0.

Examples An example will clarify. Suppose the mo-
mentum range of the machine is a factor two, p̂ = 2p̌. The
upper and lower fixed points become:

pc1 = p̌(3+
√

b)/2 , θf1/θd =+(1−2
√

b)/(2
√

b−5) (16)

pc2 = p̌(3−
√

b)/2 , θf2/θd =−(1+2
√

b)/(2
√

b+5).(17)

Substituting the condition b = 1/4 leads to the pairs:

pc1 = (7/4)p̌ , θf1/θd = 0 (18)

pc2 = (5/4)p̌ , θf2/θd = −1/3 . (19)

This couplet is rather interesting. It says that conjugate to
a reference momentum (pc1) at which there is no reverse
bending (θf2 = 0), there is another fixed point (pc2) at
which there is reverse bending similar to the value in a clas-
sical FFAG. In fact, this is usually the case.

When b = 0, the fixed points are coincident: 2pc = (p̌+
p̂). Under the assumption of 180◦ degree phase advance
(p0 = p̌), the bending is θf/θd = (p̌− p̂)/(3p̌ + p̂). Under

the simplifying assumption that p̂ = 2p̌, the fixed point and
reverse bending are pc = (3/2)p̌ and θf/θd = −1/5.

These two examples in which the longitudinal and trans-
verse reference momenta are equal, correspond to the orig-
inal 1999 lattice of Johnston[2] with b = 1/4; and the 2005
lattice of Keil[3] with b = 0. Other lattices studied in the
past, optimized under different criteria, did not have equal
reference momenta; but there is no strong reason why they
should not be revisited and readjusted.

A preferred longitudinal working point is (a = 1/12,
b = 1/5). Under above simplifying assumptions, the refer-
ence momenta are

pc1 = 1.72361p̌ , θf1/θd = −0.0257145 (20)

pc2 = 1.27639p̌ , θf2/θd = −0.321393 . (21)

It is suggested that future lattices adopt reference
momentum pc1.

Variation of conditions with cell tune

The examples above assumed a 180◦ phase advance, or
cell tune of 1/2. One may ask how does the working point
b vary with cell tune, under the constraint θf = 0 (i.e. no
bending in the F element at pc.) Figure 4 shows this vari-
ation in which b rises as the focusing is reduced. Usually
some reverse bending (at the reference momentum) must
be allowed because it is preferred to work with longitudi-
nal parameter b ≤ 1/4 and phase advance below 180◦.

Range of path length We substitute pc1, θf1, θd1 into
the maximum (L(p̌) = L(p̂)) and minimum (Ľ) path
length, and take their difference to find the range

ΔL(p) = 3(p̂− p̌)2θ2/(4p0β) . (22)

This is independent of b, so all working points are equally
good. Under the assumptions p0 = p̌, p̂ = 2p̌, the range of
path lengths is ΔL = (3/4)l0θ2.

APERTURES AND FIELD INTEGRALS

The magnet costs are related to their apertures and to
the field integrals required to bend the maximum-rigidity
particles. As a precursor to evaluating these quantities, we
first find the closed orbits.

Closed orbit displacements

The reference momentum and bending split p c1, θf1, θd1

are substituted in Eq.(1) to give the closed orbits (versus
momentum) at the D and F elements:

xd = (p− pc)(pθ − p0θd)/(p0β) , (23)

xf = (p− pc)(pθ + p0θf )/(p0β) . (24)

The displacements for the working point b = 1/5 are
shown in figure 5.
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Figure 5: Displacements xd

(red) and xf (blue) versus
momentum p
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Figure 6: Magnet fields Bd

(red) and Bf (blue) versus
momentum p

Ranges/Apertures

Under the assumption of pencil beams, the magnet aper-
tures are given by the range of closed orbit variation. The
range of xf is given by Δxf = xf (p̂)− xf (p̌). We substi-
tute pc1, θf1 to obtain

Δxf = (p̂− p̌)(2p0 + p̌ + p̂)θ/(p0β) . (25)

The minimum value of xd occurs at the momentum p̃ =
(pc + l0βθd/θ)/2. The range of xd is given by Δxd =
xf (p̂)− xf (p̃). We substitute pc1, θd1 to obtain

Δxd = (2p0 + 3p̌− 5p̂)2θ/(82p0β) . (26)

Thus, both magnet apertures Δxd and Δxf are, in princi-
ple, independent of the working point b. Under the usual
simplifying assumptions, Δxd = (5/8)2l0θ and Δxf =
(5/4)l0θ. Slightly more general, the ratio of ranges is
Δxd/Δxf = [52(p̂ − p̌)]/[42(3p̌ + p̂)] when the betatron
phase advance is 180◦ per cell.

Offsets The swing of closed orbits about xd = 0 and
xf = 0 is not necessarily equal. The “physics” must be
independent of the coordinate origin, and any offset can be
removed. Though it is unlikely, the asymmetry of the orbit
sweep could be the cause of greater costs in the magnets.
For that reason, we give expressions for the offsets. Com-
plementary to the defintion of ranges, we have the offsets
δxf = xf (p̂) + xf (p̌) and δxd = xd(p̂) + xd(p̃). We sub-
stitute pc1, θf1, θd1 and simplifying assumptions to give:

δxd = l0[23 − 16(2b +
√

b)]θ/64 , (27)

δxf = l0[2 − (2b + 5
√

b)]θ/4 , (28)

and at the working point b = 1/4, one has δxd =
+(7/16)l0θ and δxf = −(1/4)l0θ. The general case
is given in Ref.[4]. The offsets given in equation 28 are
sketched in Fig. 7. Evidently the asymmetry in the extrema
of motion depend on the working point b. When we require
equality between pf and pc, we lose control over δxd, δxf .
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Figure 7: Offsets δxd and δxf versus working point b

Magnet fields

One should not become fixated on these offsets, since
they are of little or no practical significance - particularly
so when rectangular bending magnets are employed. The
magnetic field integrals are given by δψd × p and δψf ×
p. If the closed orbits, xd, xf , and pc, θd, θf , equations
(23, 24, 8, 14, 15), are substituted in (1), the field integrals
(metre×tesla) become:

l ×Bd,f = p θ[2p0 ∓ 4p± 3(p̌ + p̂)]/(2p0) . (29)

Take the −, + sequence for the field in the D element Bd;
and the +,− for Bf . Clearly, the fields are independent
of the F bend angle θf and independent of the longitudi-
nal b parameter, and so all machines are equivalent. The
variation of these fields with momenta is sketched in fig-
ure 6. The peak field in the D element occurs at p = [2p0 +
3(p̌ + p̂)]/8 with value Bd l = [2p0 + 3(p̌ + p̂)2]θ/(32p0).
The peak field in the F element occurs at p̌ and has value
Bf l = p̌[2p0 + p̌− 3p̂]θ/(2p0).

CONCLUSION

In the context of a kick-model for a linear-field non-
scaling FFAG, we have found conditions for the trans-
verse reference momentum (pc) and the fixed point(s) (pf )
of the longitudinal time of flight (ToF) to be coincident.
These conditions depend on the longitudinal working point
b. However, the ranges of the ToF and the magnet aper-
tures (i.e. closed orbit ranges) and peak field integrals are
all independent of b, so all working points are equally good
in terms of optics.

However, if the orbit asymmetry (or offset) has any effect
on the magnet mechanical design and its physical realiza-
tion, then this ceases to be under our control when p c = pf .

In the machine physics studies planned for the 10-20
MeV/c electron model[5] it is anticipated to alter b by vary-
ing the radio-frequency. Consequently, if we facilitate 6-
dimensional particle tracking by setting pc = pf for one
particular value of b, there may be difficulties (for com-
puter programs) when other values of b are used - because
the radio-frequency is nolonger synchronous with the orbit
frequency at the reference momentum pc. But, having the
nominal design set with pc = pf will make for portability
of lattice designs between the various computer programs.

REFERENCES

[1] S. Koscielniak: TRIUMF TRI-DN-05-14, March 2005.

[2] C. Johnstone: NuFact99 Workshop, Lyon France, July 1999;
or Proc. 1999 Particle Accelerator Conf., New York N.Y.,
March 29 - April 2, 1999, pg.3068.

[3] E. Keil: FFAG Workshop, FNAL, Illinois, April 3-7 2005.

[4] S. Koscielniak: TRIUMF TRI-DN-05-27, October 2005.

[5] S. Koscielniak & S. Machida: Report of Working Group I:
FFAGs for Muon Physics; Proc. Int. Workshop on FFAG
Accelerators, Oct. 13-16, 2004, KEK, Tsukuba, Japan.

Proceedings of EPAC 2006, Edinburgh, Scotland TUPLS072

04 Hadron Accelerators
A12 FFAG, Cyclotrons

1665


