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Abstract 
Non-scaling FFAG accelerators using constant-gradient 

F and D magnets with their fields decreasing outwards can 
compact ion orbits for a wide range of momentum (e.g., 
1:2) into a narrow radial range. Designs to accelerate 
protons, ions and muons are currently being studied for 
proton drivers, cancer therapy facilities and neutrino 
factories. In this paper, analytic formulae are reported for 
some basic orbit properties, helping to make clear their 
dependence on the various design parameters and 
momentum. For the designs tested so far the numerical 
results are in good agreement with those obtained using 
lattice codes. 

INTRODUCTION 
In recent years there has been a renascence of interest in 

FFAG (Fixed-Field Alternating-Gradient) accelerators, 
led from Japan, where the first proton FFAGs have been 
built[1,2] and others are under construction or planned[3] 
to accelerate or store protons, electrons, light ions and 
muons. These all follow the traditional "scaling" principle 
whereby the orbit shape, optics and betatron tunes are kept 
the same at all energies, to avoid emittance blow-up 
caused by crossing betatron resonances. This requires 
constant magnetic field index k(r) = r (dBav/dr)/Bav, 
implying an average field strength accurately following 
Bav = B0(r/r0)k over the whole radial aperture defined by 
the momentum profile p = p0(r/r0)k+1, where, for economy, 
k >> 1. Moreover, the azimuthal field profile B(θ)/Bav 
must be kept the same at all radii, and vertical focusing 
maintained by using either radial sectors with alternating 
polarity to produce high magnetic flutter, or spiral sectors 
with large constant edge angles. Magnets to satisfy these 
requirements clearly present some engineering challenges. 

Over the last few years, it has also been realized that 
there may be circumstances where the scaling requirement 
can be relaxed or dropped. For instance, short-lived partic-
les, like muons, must be accelerated (and pass through 
resonances) so quickly that any emittance damage should 
be negligible. Scaling can therefore be abandoned, the 
tunes allowed to vary, and a wider variety of lattices 
explored - as pointed out in 1997 by Mills and Johnstone 
in a study of FFAG arcs[4] for recirculating linacs. More-
over, using constant-gradient “linear” magnets greatly 
increases dynamic aperture and simplifies construction, 
while employing the strongest possible gradients minim-
izes the real aperture. Johnstone[5] applied this non-
scaling approach to a complete FFAG ring, showing that 
it would be very advantageous to use superconducting 
magnets with positively bending Ds stronger and longer 
than the Fs (i.e. both Bd and |Bf| decrease outwards). The 

radial orbit spread could be reduced (allowing the use of 
smaller vacuum chambers and magnets), and the orbit 
length C(p) shortened and made to pass through a 
minimum instead of rising monotonically as p1/(k+1) . The 
variation in orbit period is thereby reduced, allowing the 
use of high-Q fixed-frequency rf. The minimum in C(p) is 
obtained by striking a balance between two effects which 
tend to increase it - larger radii of curvature at high p, and 
greater orbit scalloping at low p. 

Thin-Lens Model 
 Previous work by the authors[6,7,8] has shown that a 

simple model, treating the magnets as thin lenses, suffices 
to derive expressions for the basic orbit shape and its 
dependence on momentum and other parameters, and 
revealing the parabolic variation of C(p) and the capability 
for very high momentum compaction. For symmetric 
F0D0 or triplet cells: 

 C(p) = C(pm) + (12π2/q2μ2N ℓ) (p - pm)2  
where N is the number of cells, q is the charge, μ is the 
magnet strength (gradient × length - assumed equal for F 
and D), and ℓ is the (shorter) FD spacing. The orbit radii r 
show a similar p dependence, though with distinct pm. 

As might be expected from the simplicity of the model, 
its quantitative predictions do not agree exactly with those 
obtained using lattice codes such as MAD,COSY,or PTC. 
For a representative selection of lattices, the agreement as 
to circumference was found to vary between 1% and 6% 
for F0D0, but only between 36% and 67% for triplets.  

SECTOR-MAGNET MODEL FOR 
TRIPLET & F0D0 LATTICES 

As it seemed of interest to pursue the analytic approach 
with something more realistic, but still tractable, we have 
developed a model assuming constant-gradient sector-
magnets set with neighbouring edges parallel. The initial 
work[9,10], for triplet and F0D0 lattices, gave formulae 
for orbit radii and circumference yielding values in close 
agreement with those produced by the lattice codes (ass-
uming hard-edge magnets). The present paper amplifies 
this work, extending it to doublet lattices, and also deriv-
ing the explicit momentum dependence of r(p) and C(p).  

We begin with the triplet case, where reflection 
symmetry allows us to consider just a half-cell from the 
mid-point of the long straight to the centre of the D  
(Figure 1). (The F0D0 case is obtained when the long 
straight shrinks to zero.) The magnet field strengths Bi = 
Bi0 + Bi'x (where i stands for f or d) are arranged so that 
for some reference momentum p0 = qBd0 d = qBf0 f the 
closed equilibrium orbit (CEO) follows a centred circular 
arc of radius ρi0 = d or f within each magnet, entering and 
leaving each edge perpendicularly. Radial displacements x 
are measured relative to this "reference orbit". 
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For other momenta p = p0 + Δp there are also local EOs 
within each magnet - circular arcs displaced from the 
reference orbit x = 0 by Xf(p) and Xd(p) where 

Here the field indices nd0 ≡ -Bd'd /Bd0 and nf0 ≡ +Bf'f /Bf0. 
The CEO for each momentum crosses the ends of the half-
cell at right angles - so all the CEOs are parallel in the 
long straight. Within each magnet the CEO follows a 
betatron oscillation (sinusoidal in F, hyperbolic in D) of 
amplitude Af = xfL - Xf  or Ad = xdL - Xd  about the local EO 
for that momentum, where xfL and xdL are the offsets at the 
normal-crossing edge. At the ends of the short drift 
between F and D the betatron displacements and 
divergences are: 

where the phase advances and divergence 

F and D are the sector angles (D - F = π/N), and nf, nd are 
evaluated at Xf, Xd. Matching the divergences (χf = χd ≡ 
χfd), and writing λf  ≡ √(1 – nf)/f,  λf  ≡ √(nd – 1)/d, we find:  

φλ
ψλ

sin
sinh

f
d

dA
fA

≅ . 

Matching the offsets, so that xf - xd = ℓ tan χfd, we get: 

and hence Af too, enabling us to compute the offsets 
x(p,θ) for any azimuthal angle θ. We can also integrate 
along the various orbit segments (F, D, ℓ) to find the 
deviations in path length between momenta p and p0 
(ignoring negligible higher-order terms in Af/f and Ad/d): 

Table I compares values of xf-, xd-, and ΔC computed for  
some FFAGs designed by J.S. Berg and D. Trbojevic with 
the values yielded by lattice codes. Agreement is much 
better than for the thin-lens model, ΔC for triplets being 
on average only 9% low at pmin = 10 GeV/c and 3% low at 
pma x = 20 GeV. For graphical comparisons see [9]. 

Table 1: Formulae (red) & lattice codes (blue) compared 

None of these formulae give any direct insight into the 
momentum dependence, since Xf, Xd, nf, nd, φ, and ψ  all 
individually vary with p. But by expanding the express-
ions as power series in Δp, assuming nd0 » 1, |-nf0| » 1 and 
L > {d/√nd0 , f/√(-nf0 )}, some rough conclusions are poss-
ible. Let δ ≡ Δp/p0 and write nf0 in place of |nf0| for brevity. 
The dominant terms in δ and δ2 come from the terms 
linear in Xd , Ad, Xf , Af  because the terms in (Ad)2

 and (Af)2 
are of order at least 1/√n smaller. Notice that the sign 
changes between Δsd and Δsf explain the compaction as 
the result of partial cancellation between competing terms. 

Figure 1: Triplet or F0D0 half cell. 
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DOUBLET LATTICES 
As doublet cells lack the reflection symmetry of triplet 

or F0D0 cells, their algebra is more complicated. The sec-
tor magnets are assumed set with their edges parallel, sep-
arated by drifts of length ℓ and L (see Fig. 2), with their 
opening angles denoted by D and F where D - F = 2π/N. 
As before, we assume that the CEO for the reference mom-
entum p0 follows a circular arc in each (of radius d or f), 
crossing the edges normally.  

The geometric parameters of the reference orbit may be 
conveniently described in a complex plane centred at its 
entry point into the D magnet, with the real axis outwards 
along the sector edge, at an angle G with respect to the 
radius vector (length R) from the machine centre. 
Following the orbit the length of the cell, it may be seen 
that: 

    Re-iG(e2πi/N – 1) = –d + (d + f + iℓ)eiD – (f – iL)e2πi/N, 
providing two real equations which may be solved for the 
angle G, and one of  D, d, or f, given the other two and N, 
R, ℓ and L. 

For off-momenta p, there are circular-arc EOs in each 
magnet at x = Xi, defined by the same formula as for the 
triplet case, and a closed orbit composed of hyperbolic, 
sinusoidal and straight components. If the phase advances 
at the ends of the long straight are denoted ψL and φL, the 
betatron displacements and divergences at the magnet 
edges are: 

.sinhtan,sintan
,cosh,cos

LdddLLfffL

LdddLLfffL

AA
AXxAXx

ψλχφλχ
ψφ

≅≅
=−=−

 

Writing  Cd = Ad coshψL, Sd = Ad sinhψL, 
 Cf = Af cosφL,  Sf = Af sinφL , 

 ΔX ≡ Xf - Xd , 
and matching the displacements and divergences over the 
two drifts, yields four linear equations in Cd , Sd , Cf , Sf : 

λfSf = λdSd = -(Cf - Cd + ΔX)/L 

λf(Sf cosφ + Cf sinφ) = λd(Sd coshψ + Cd sinhψ)  
= (ΔX + Cf cosφ - Sf sinφ - Cd coshψ - Sd sinhψ)/L. 

The solutions – too lengthy to quote here – can then be 
used to obtain explicit formulae for Ad , ψL , Af , and φL . 
Integrating along the orbit segments, as before, yields the 
deviations in path length between momenta p and p0: 

CONCLUSION 
Based on thick-element models of a magnet lattice, 

analytic formulae for dispersive orbits and their path 
length have been derived for non-scaling FFAG 
accelerators. The thick-element formulae for F0D0 and 
triplet cell properties have been compared against 
numerical results from lattice design codes, and are found 
to be accurate to within a few per cent. One surprising 
feature of the analysis is that the terms linear in close-orbit 
displacement contribute the dominant (off-momentum)2 
terms to the path length expressions. The doublet cells 
offer path-length and economic advantages over triplet 
cells, and will be important in the fast acceleration of 
muons; the formulae presented  will aid in their design. 
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Figure 2: Orbits in a doublet cell. 
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