
CAN THE ACCELERATOR CONTROL SYSTEM BE BOUGHT FROM
INDUSTRY?

M.Plesko, Cosylab, Ljubljana, Slovenia.

Abstract
This presentation is intended for project leaders and

specialists, whose components depend on the control
system, which is nearly everybody apart from control
experts. The presentation will explain the basic concepts
of an accelerator control system, illustrate the similarities
and differences among the most popular packages, which
are nicely disguised in acronyms such as EPICS,
TANGO, TINE, DOOCS, COACK, XAL, CDEV, etc. and
compare them to commercial control systems (DCS and
SCADA) and LabView. The second part of the
presentation will analyse whether a control system is in
principle a component as any other and whether therefore
in principle it should be bought eventually from a
competent supplier like all the other components. It will
identify the reasons why many people are reluctant to
outsource control systems and illustrate this with some
personal experiences and suggestions how to overcome
these problems. The talk will conclude by showing how
naively we have started a spin-off company [1] to
commercialize the accelerator control system that we
have developed, how we have found sustainable sources
of business, and how we see the future in this and related
markets.

INTRODUCTION
Let’s start with a philosophical statement, which will

appear indirectly throughout all this paper: The control
system (CS) is not only the “glue” that keeps the
equipment together. It is also a model of, or better, a
container of the processes going on in the accelerator. It
differs from other equipment exactly in that sense. Other,
physical pieces of equipment have their own separate
existence, while the CS is nothing without equipment and
yet it appears to give “life” the equipment its raison
d’etre, because it makes it accessible. This fundamental
difference and the fact that software is considered
immaterial are, in my own opinion, the two reasons why
the CS was able to keep such a special position in all
accelerator projects I had the opportunity to work for or
with.

Therefore it is important to remember that the
expectations of the final user, which is mainly the
operator and only sometimes the engineer, should
ultimately determine the design of the CS. On one end of
the CS she/he requires the physical devices to be added
easily and on the other she/he wants a powerful and easy-
to-use user-interface. No matter the technology and no
matter all those incomprehensible TLAs (TLA is a three
letter acronym that stands for “three letter acronym”).
After all, it worked perfectly well with cables and
mechanical sliders and gauges half a century ago, didn’t
it?

THE BASIC CONCEPTS OF AN
ACCELERATOR CONTROL SYSTEM

The Basic Architecture
It would be relatively easy with today’s technology to

read one value at one end and send it to the operator
screen. But in addition, one has to take into account that
specifications are often modified during the course of
development, usually by the addition of features or even
physical components. All these requirements demand a
CS that is able to provide a great deal of flexibility.

Unlimited flexibility, however, results in unacceptably
high cost. In order to achieve reasonable flexibility at low
cost, one designs a small number of fundamental building
blocks across the whole control system, both in hardware
and software that are not allowed to be altered in any way.
The design of the software blocks is usually associated
with one of the CS packages, such as EPICS, DOOCS,
TANGO, TINE, etc. The hardware blocks are individual
boards. Ideally this design should be frozen only after
carefully investigating the available requirements and
after having predicted possible future needs.

In reality, we usually work backwards. We decide on a
control system package, then we decide on a given
hardware technology (say, VME, compact PCI, etc.) and
then we match our specifications to that. If we have
specifications at all at this stage. But that is a subject of a
section further below.

One may wonder why this approach works. The simple
reason is that nowadays, practically any technology is
capable of doing the job. It may need slightly faster
computers, it may be vastly more expensive to implement
in terms of money or time, but as CS are usually not on
the critical path of a project and cost less than the major
components, nobody really notices this. So let’s just keep
in mind that there is room for improvement. On the other
hand, this improvement may be smaller than the gain of
just copying whatever concept the most recent project has
adopted. If it worked for them, …

Now we have to put the blocks into a nice architecture.
The accelerator is composed of physically distributed
components. This means that the part of the control
system that is related to the equipment (data-taking,
input/output, or whatever we call it) is separated from the
part, which displays values to the operator. So we have at
least two separate layers or tiers. We see already at this
early stage the arbitrariness of choosing names. This is
one of the aspects that make CS so confusing. Especially
to physicists and engineers, who go through a long drill to
remember the exact differences of words that are
otherwise synonyms. After all, which layman would differ
between force, power and strength? Computer people

WEIFI02 Proceedings of EPAC 2006, Edinburgh, Scotland

1916 08 Applications of Accelerators, Technology Transfer and Industrial Relations
T23 Technology Transfer

apparently don’t either and to make matters worse, invent
every few years a set of completely new expressions.

Just to illustrate this in a few examples, let’s compare
modular programming “speak” to object oriented (OO)
“speak”. Would you know that in OO, “persistent store”
means saving data to a file and that “methods” are the
same as functions and procedures, which in turn replaced
the good old subroutines! Oh yes, and what were once
variables are called “fields” in OO programming.

Let’s go back to our two tiers. We have thus, to
simplify, one computer at the device and one in the
control room. Obviously, the cheapest way of connecting
them is via a local area network – LAN. LAN is a simple
concept, like the phone, that hides a lot of technology
from the casual user, like a phone system does, too. And it
works very similarly to a private phone exchange.
Essentially, a LAN nowadays uses so-called UTP
(unshielded twisted pair) cables, over which an electrical
protocol called Ethernet is operating. Data are transmitted
digitally in packets and the rules how those packets are
assembled, checked for arrival and resubmitted, are
described with the acronym TCP/IP. It is an essential part
of the Internet protocols, therefore nowadays anybody can
say that they use Internet technologies, if they connect
two PCs with a cable.

To finish our simplified example, this is is the essential
architecture of a control system:

• Computers, which are attached to devices and
read/write data from/to them

• Computers, which display those values to the
operator and accept commands from her/him

• A network with a communication protocol that
connects all those computer with each other,
just like the internet connects all computers in
the world.

Two Tiers Versus Three Tiers
You can skip the following paragraph in order to avoid

further confusion. But if you want to know why there are
also control systems with three and four tiers read on:

Before the times of ubiquitous 100 Mbit Ethernet (still
remember the famous coax yellow cable?) and cheap
processors, CS designers had to save bandwidth and
money with the following trick: They did not have all
computers with Ethernet and TCP/IP. Instead, they had
several low performance (sometimes even without an
operating system) computers connected to devices.

Then they had a cable connecting those computers with
a normal PC-type computer (it wasn’t a PC then, but
that’s not important for the argument). Such a cable is
something like a logical extension of the PC. As a PC has
an internal bus that allows to add several cards, such cable
with the corresponding protocol is called a fieldbus.
Opposed to the internal bus, which is normally on a
backplane, is goes out of the PC and into the “field”. Well
known fieldbuses are for example CAMAC, a very old
standard developed for nuclear physics in the times when
8-bit computers were the state of the art. Modern

fieldbuses are CAN or Profibus (of which there are two
versions, but only DP is used nowadays).

Also CAN has several versions and is called DeviceNet
in the USA when sold by Allan-Bradley. There are other
versions of CAN, because people wanted to add addition
functionality and frameworks for protocol handling, just
like TCP/IP sits on top of Ethernet. This is all very
friendly to developers, but creates confusion for outside
people and for those, who try for the first time to
understand the field of control systems and are expected
to decide on a technology.

So now, we have three tiers:
• The dumb computers (often called controllers)
• The computers that connect those dumb ones –

there are usually several disjoint branches
• The computers for the operator, often called

operator consoles or just consoles.
The computer in the middle have only the function to

serve data to the consoles, therefore they are often called
servers.

Now we have also two different types of
communication: a fieldbus and the well known Ethernet
with TCP/IP. Obviously, this subdivision adds to the
complexity and what is even worse, it introduces new
technologies that have to be learned, managed and are
another risk. As often in IT, the greatest risk is that
technology becomes obsolescent – suddenly the new
software does not work with the old hardware or vice
versa, or the fieldbus is not supported in the new
operating system, etc.

The only way to minimize this risk is to reduce the
number of technologies – spreading out NEVER reduces
the risk. Therefore my suggestion is, and I have
developed control systems with fieldbuses before, place
your bets on the ubiquity, low-cost and availability of
Ethernet and go for a two tier architecture.

Just for completeness sake, there are also four tier
architectures, double Ethernet networks for redundancy.
Unless there are really good reasons, bring in redundancy
in a way which keeps the two-tier architecture. And if you
really want more tiers, use software-tiers: there, it is a
matter of definition what a tier is and not a matter of
different technologies.

Interfaces, i.e. the Contract
In real life, there are more complex functions required

than just reading values and applying commands. We
must therefore refine the architecture by further splitting
each tier into 3-4 independent layers, interconnected via
interfaces. The implementation of solutions for different
cases in the layers became the above mentioned building
blocks.

This structure allowed the programmers to develop the
layers independently of each other. Ideally, the only
constraints to the programmer are the interfaces that had
been carefully designed in the first step of the design
process in order to minimize interdependencies between
layers, both in code and data. These interfaces define all
the possible interactions between layers in a consistent

Proceedings of EPAC 2006, Edinburgh, Scotland WEIFI02

08 Applications of Accelerators, Technology Transfer and Industrial Relations
T23 Technology Transfer

1917

way. The result is cleaner code and better equipment,
since every participant in the development process only
has a limited number of things to worry about. If some
components have to be optimised they can just be rebuilt
from scratch, without affecting other components,
because the interfaces stay the same. In addition, testing,
debugging and error correction is much easier, as it can be
kept localized.

We see that communication through standard protocols
(such as channel access in EPICS) is not enough. Clean
and consistent interfaces must be designed and agreed
above these protocols to provide a suitable context. Those
interfaces are just like contracts – one programmer can be
sure to expect exactly the right data in the right way from
the other programmer. In case something doesn’t work it
can be tested unambiguously, where the problem lies.
Although often both programmers must work together to
find the causes in the quickest way. Here, as in business
life, just claiming that one is right and bringing out
paragraphs of “the contract” is legally possible, but is not
productive and creates bad resentments. The philosophy
of our company on in software projects is, even when we
work as business partners, or as subcontractors and we
have double checked that the problems are not due to us,
we offer help to the partner in finding the bugs,
sometimes even at our cost.

AVAILABLE CONTROL PACKAGES

Figure 2: A comparison of control system packages and the
layers they cover.

There are several competing free or open-source
control system (CS) packages and individual components
that have been developed at accelerator labs and are now
being shared more or less successfully. Many look very
similar but in fact address quite different issues in
different ways: EPICS, COACK, TINE, DOOCS, ACS,

TANGO, ACOP, CDEV, Abeans, CosyBeans, XAL,
Databush, just to name those that are advertised as
packages. For the sake of example we will be mentioning
only some systems, which does not represent an
endorsement by the authors, nor is it any reflection on
anybody else's system. We will also not further discuss
XAL and Databush, which are packages for machine
physics calculations and should be compared to the more
and more popular Matlab machine physics libraries.

The different coverage of control system packages is
shown in figure 1. It cannot emphasize the features and
services that are provided. We have therefore prepared a
table, with input from authors and users of the respective
packages. The table itself would exhaust the page length
requirements of the proceedings. It is nonetheless
illuminating and we therefore refer the reader to reference
[2] for a full comparison and allude to certain aspects
below.

To illustrate the difficulties (and dangers) of making
comparisons such as these we note that, just comparing
TINE and EPICS is already like comparing apples and
oranges. TINE is more of a communication protocol and
should be compared to channel access. Note also that the
EPICS database is really at the lowest level of the control
system. One should be aware of this point, because when
people say EPICS, they mean the whole lot of very
unrelated things like the database, the channel access
protocol and the MEDM GUI tool. The database is a
viable idea and - apart from some historic glitches that are
being addressed in the new versions, like the short limit
for names, poor debugging options - a useful approach for
I/O integration. Such low-level IO integration is
frequently not found in CS packages.

For commercial packages, there are several terms used
in different occasions, such as industrial control systems,
commercial control systems, SCADA (supervisory
control and data acquisition) or DCS (distributed controls
systems) and often people just use the terms to distinguish
them from control systems that have grown in our
community and are free. Again the names are different for
historic reasons are really mean one and the same thing
Maybe the biggest difference among those two groups is
who the various systems are aimed at. Industrial systems
are aimed at people who just want to concentrate on the
application, with as little programming – often preferably
none - as possible, while free systems are aimed at the
people who need flexibility over anything else.

When control people (including myself) will want to
convince you to adapt to their control system package of
choice, be prepared for a barrage of buzzwords. In reality
it matters little, which system they choose. Rather ask
them for a list of actions and clear development
procedures. Don’t forget to ask for a test plan and
documentation before the implementation starts, although
they will tell you this can not be done. If you paid an
outside company and they wouldn’t get the money before

EPICS

DOOCS

COACK

CDEV

TINE

chan. acc.

ACS

 driver data
SERVER

commu-
nication

 API visual support
CLIENT

ACOP

Abeans CosyBeans

TANGO

MEDM

JDM

DDD

WEIFI02 Proceedings of EPAC 2006, Edinburgh, Scotland

1918 08 Applications of Accelerators, Technology Transfer and Industrial Relations
T23 Technology Transfer

all is finished, it would become not only possible, but
standard industry practice.

WHAT REALLY IS IMPORTANT ABOUT
CONTROL SYSTEMS

All the “sexy” technology lets us often forget that
control system is an engineering discipline like all the
others, but but with an even more complicated
development cycle:

• Write specifications
• Architecture
• Design
• Prototyping – probably the only fun part
• Define test procedures
• Implementation (coding) – the only software

part
• Writing documentation
• Testing (follow ISO procedures)
• Debugging
• Acceptance at customer

Don’t forget, that even in-house control groups have a
customer – physicists and operators, which must be
involved in the specification, testing and acceptance
phases.

Think like this: in vacuum, a specific tube or chamber
is just the result of much designing before and testing
after manufacturing. So is programming and running
programs just a small step in the whole process – or so it
should be. Often, programming is considered the key and
only aspect apart from buying some hardware. The simple
reason for this is that anybody can design and write at
least simple programs, but not anybody can work with
tools. Not to become philosophical, we conclude that
control systems are the closest to pure procedures, which
our mind seems perfectly adapted for and allows at least
in principle to reverse any mistake at no apparent cost.
The true cost, indeed, is very high – lost time, which in
our modern society becomes more and more the most
precious commodity of all.

What A Project Leader Must Look for in CS
The nearly religious discussions about all those nice

features individual control system packages have (see
next section for an overview of them) more often than not
obscures the items which a project leader really must take
care of. Although not strictly part of the control system,
they fall into the domain of the control system group and
in reality form the largest part of their work:
• Signal list:. Some call it the golden or master list.

Although it is so common sense that you laugh at me
now, I have yet to see a project where the signal list
has not been completed in the last minute or actually
after some of the development has been done. The
signal list really is a contract between the equipment
specialist, the control expert and the operator. A
contract that should be honored to the maximum

extent. Changing something only because it is easy to
change can have serious consequences later.

• Signal names and general name conventions: a part
of the signal list, but too obvious to be taken
seriously and therefore often neglected. But the
moment more than one person is involved, names
must be unique and a good naming convention helps
to keep it that way.

• Alarm levels and operation limits: often left empty,
because even the device expert does not know
reasonably acceptable operation limits. This is later
forgotten and only rediscovered many years into
operation

• Configuration management: having procedures in
place that deal with changing signal list, changing
hardware, and changing software in such a way that
all interdependencies are taken care of and that one
number must not be changed in several places
(otherwise it won’t be changes and the whole CS
becomes inconsistent)

• Logistics of installations: equipment can’t be tested
without CS, CS can’t be tested without equipment –
people often forget that although only careful
planning is needed. involving both sides, the CS
people and the device experts.

• Bugs: To err is human, but for real crap, you need a
computer. Seriously: it is normal that bugs happen,
because the complexity of the software is just too
great. One has to plan a lot of time for testing and
fixing bugs. And one has to live with workarounds.
Having said that, the number of bugs and the cost
they have can and must be minimized with strict
control of the development process.

SHOULD THE CONTROL SYSTEM BE
BOUGHT OR MADE IN-HOUSE?

The previous section clearly showed that the control
system should be developed by engineers with
experiences in software projects and not just by
programmers, be they computer scientists or physicists.
Most labs don’t have people with such experience.
Commercial system integrators do have this knowledge,
but they don’t understand accelerators, which is very
important. After all, also big IT projects are awarded to
companies with a proven list of references and not to
general “programming companies”. The petrol industry
has a completely different set of software suppliers than
the telecom industry. Even big system integrators like
IBM have completely different departments dealing with
different customers.

All the above should lead to the conclusion that a
company like Cosylab that is specialized in control
systems specifically for accelerators, telescopes and
beamlines, should have good business.

Unfortunately, in the scientific and accelerator
community there are many mutually exclusive
preconceptions about why control systems should be

Proceedings of EPAC 2006, Edinburgh, Scotland WEIFI02

08 Applications of Accelerators, Technology Transfer and Industrial Relations
T23 Technology Transfer

1919

made in-house. Unfortunately for us as a company, we
must fight them all on different places and occasions.

One standard answer is: “we have to consider many
special cases and moving targets, so we don’t know yet
what work to give to you – we’ll call you later when all is
defined”. False, but we never get the call: initially, it is
too early, in the middle they don’t have time to define
clear tasks for us, and in the end they admit it would have
been easier with our help, but now it’s too late. Actually it
is never too early and never too late.

The strongest argument is that outsiders will
themselves define the work and make sure they deliver all
they have promised, because you have the leverage not to
pay them if you are not satisfied.

Another belief is that in-house people can fix problems
or write a new program overnight, while outsiders can
not. This may not always be the best way to work,
because one skips the most important steps in the
development phase described previously. But is has
certain benefits to be able to make quick fixes fast,
especially when the accelerator is standing still for some
obscure bugs. Having understood these issues, we at
Cosylab offer to labs a combination of in- and out-
sourcing: we leave one person permanently at the lab to
collect requests and be available for quick fixes. In
parallel, we back him up by the large team at Cosylab to
provide expertise on all possible aspects. If the lab is in a
different continent, we literally fix problems over night.

So our new business model is something like a sale in a
supermarket: Pay one, get many! The real benefit for a lab
is that they get a quarter each of a designer, an
implementer, a tester and a project manager. For them it is
actually cheaper to pay one external than to hire four
different experts.

To conclude this section, my argument is to not
necessarily buy the complete control system, but to
outsource much of the development and installation,
including writing documentation, which nobody in the lab
will do, while a small company like ours is happy do earn
a living with it.

About twenty years ago, control electronics started to
shift from in-house to commercial off-the-shelf and now
control software could be in a similar transition phase.

HOW WE STARTED THE COMPANY
The team started as a group of students under my

supervision at the J. Stefan Institute in Ljubljana, who got
the contract to develop the control system for ANKA and
part of the ALMA Common Software. Our team consisted
practically only of undergraduate students. Stimulating
and rewarding the students with cutting-edge technologies
and travel to conferences like this and installation
fieldwork are an important positive factor in raising their
motivation. However, building any system with a group
of inexperienced students is quite a challenging task. To
cope with it, we had to use many software engineering
tools: CVS for versioning and source archiving, Bugzilla
for keeping our bugs in order, a to-do list for managing

tasks, an activity log and also many other programs and
scripts, some found on the Internet and some made by
ourselves. In the end, we had to become organized like a
professional company. Documentation and demos can be
found on our old homepage [2].

So we had a veteran team with an average age of 22.
The oldest members have already graduated and left and
we would have lost all our investment in the people, if we
had let this trend to continue. Our institute couldn’t hire
the whole team; therefore we just decided to create a spin-
off company for developing and installing control systems
for accelerators and other large experimental facilities [1],
with the full blessing of our institute director and division
leader. True to the research community that we grew in,
the vision of the company is to make a living with our
work instead of selling software licenses. And true to our
philosophy of high motivation, all initial employees are
co-owners.

An interesting fact is that our initial financial plan for
the first four years was practically completely correct in
predicted turnover. However, the customer that we
eventually had were almost completely different from
those we have foreseen. We have also substantial
activities in completely other markets such as
Geographical Information Systems (GIS), telecom and
automotive electronics, where we re-use the technology
we have developed for accelerators. It is important to
always be looking for novel business opportunities

CONCLUSIONS
Now, we are the leading commercial provider

specialized in accelerator and beamline control systems.
The company has grown to over 25 employees, but we
still work with students of physics, electronics, software
science and mathematics, of which we have about 50 in
our so-called CosyAcademy pipeline..

Among our customers are over 20 major accelerator
labs all around the world and companies that supply
equipment to accelerators such as Bergoz, Danfysik,
FMB, Instrumentation Technologies and Oxford
Danfysik. We will probably never get rich, but we do a
good and competent job and are widely respected for this.
If we make mistakes, we admit them, apologize and
invest all efforts to fix them.

So we are a proof that the simple answer to the title of
this paper is “yes”. The more complicated and realistic
answer is, “yes, but you must first choose the right
company, one with good understanding of accelerators
and with proven competence. Then look what your people
can do best and leave the rest to outsourcing”.

REFERENCES
[1] www.cosylab.com.
[2] http://kgb.ijs.si/KGB

WEIFI02 Proceedings of EPAC 2006, Edinburgh, Scotland

1920 08 Applications of Accelerators, Technology Transfer and Industrial Relations
T23 Technology Transfer

