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Abstract

In this work we present a set of measurements of the
effectiveness of RF phase modulation on the second har-
monic of the RF frequency as a mechanism to damp lon-
gitudinal coupled-bunch instabilities. We also propose a
theoretical model of the damping mechanism, in which the
increase of the spread in synchrotron frequencies inside the
bunches produced by phase modulation is responsible for
damping the centroid dipolar coherent motion caused by an
external excitation, which could be a Higher Order Mode
(HOM) of the RF cavities driving the coupled bunch mo-
tion. We measured the coherent synchrotron oscillation
damping of a single bunch under two circumstances, with
and without phase modulation, and determined the amount
of extra damping due to the modulation. With this experi-
ment we could also measure the frequency of small oscilla-
tions around the stable islands formed by phase modulation
and its behavior when the RF phase modulation amplitude
and frequency are changed. We performed measurements
of Beam Transfer Function (BTF) to observe the effects of
phase modulation on the stable area for coherent oscilla-
tions and compared the results with our theoretical model.

INTRODUCTION

The LNLS Synchrotron Light Source is based on a 1.37
GeV electron storage ring with an initial current of 250 mA
in routine user shifts. Due to the need to install insertion de-
vices and store higher currents the RF system was upgraded
with the installation of a second active cavity, which oper-
ates at a frequency of 476.066 MHz. This second RF cavity
has a longitudinal Higher Order Mode (HOM) - with a fre-
quency of 903 MHz - excited by the beam which causes an
orbit horizontal distortion with an amplitude of± 5 μm de-
tectable at the most sensitive beam lines. This orbit distor-
tion was intermittent and appeared when the beam coupled
with the HOM of the cavity exciting a large longitudinal
dipolar oscillation. With temperature and plunger scans we
were able to identify the longitudinal mode L1 (associated
with the CBM 133) of the new RF cavity as the main source
of instabilities in the machine however we could not find
a cavity operation condition where this HOM is damped.
Since it was not possible to find a passive way to create a
region that would be free from instabilities, an active so-
lution in the form of phase modulation of the RF fields at
twice the synchrotron frequency was attempted with suc-
cess. The phase modulation has a noticeable impact on
CBM amplitudes and helps alleviate the orbit fluctuation
[1].

THEORY

We initially follow the standard hamiltonian analysis for
the longitudinal dynamics with phase modulation. The
time averaged hamiltonian [2] for an electron in a bunch
subjected to phase modulation can be written as follows
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(
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2

)
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ωsεJ̃

4
cos 2ψ̃ (1)

where ωs = 2πfs is the synchrotron frequency, ε =
Am tan φ̄s, φ̄s = π − φs where φs is the synchronous
phase, Am the modulation amplitude and ωm the modu-
lation frequency.

The effect of phase modulation is to create new regions
of stability inside the bunch, besides the original one. As
the formation of those islands depend on the amplitude of
the modulation, there is a continuum of phase space forms
from one island to the appearance of the three islands when
ωm ≤ (2 − ε/2)ωs and the formation of only two islands
when ωm > (2− ε/2)ωs. The longitudinal phase space for
the situation described above is shown in Figure 1.

Figure 1: Longitudinal phase space for two different mod-
ulation frequencies.

Dynamics of small amplitude oscillations around
the fixed points

The island frequency, as the synchrotron one is an impor-
tant quantity since it describes the frequency of coherent
oscillation of the particles inside the island when subjected
to a longitudinal kick. It is possible to calculate the fre-
quency of particle oscillations near the stable fixed points
by expanding the Hamiltonian (1) in the neighborhood of
these points. Using the following coordinates

δ = −
√

2J sin ψ +
√

2J0 sin ψ0 (2)

φ =
√

2J cosψ −
√

2J0 cosψ0 (3)
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we find that

H ′ =
A

2
δ2 +

B

2
φ2 + higher order terms (4)

where the coefficients [3] A and B are functions of: ωm,
J0, ψ0 and ε.

The synchrotron tune is
√

AB and is real for the sta-
ble fixe points and imaginary for the unstable ones. To
find the phase space profile of the electron beam under
phase modulation we must solve the Vlasov equation tak-
ing into account the radiation damping (γd) and quantum
excitation(κ = σ2

δγd). The solution of the Focker-Planck
equation around each stable fixed point [4] is a gaussian in
each coordinate
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with

σδ =
√

κ

γd
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√
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If we go further in expanding (1) and use the canonical
perturbation technique [5] it is possible to find the ampli-
tude dependent island frequency that is given by

ω(φ̂) ≈ ω

(
1− 3 ωs

16
A2 + B2

A2|B|
φ̂

8

)
, (7)

where φ̂ is the electron oscillation amplitude related to a
stable fixed point.

Beam Transfer Function and Landau Damping

To explain why the modulation has such an intense effect
on the amplitude of the instabilities, we propose a model in
which the modulation creates a spread in the frequency dis-
tribution inside the bunch increasing the amount of Landau
Damping. In this case we are only interested in the damp-
ing of synchrotron oscillations of the bunch centroid since
the longitudinal instabilities come from a coupling between
the synchrotron motion and a HOM of the RF cavity.

Considering that the particles in a bunch have a distribu-
tion Ψ(ω) of frequencies so that

Ψ(ω) = NcΨ0c(ω) + NiΨ0i(ω) (8)

where the index c and i refer to the central and lateral is-
lands respectively. The motion of the bean centroid can be
written as

τ̄(Ω) ∝ NcIc(Ω) + Ni
ωc

ωi
Ii(Ω) (9)

where Ω is an external driving frequency and I(Ω) is the
Longitudinal Beam Transfer Function (BTF) [6] which, for
each island, can be defined as

Ic,i(Ω) ≡ π

∫ ∞

0

r2dr

Ω− ωs(r)
∂Ψ0c,0i

∂r
(10)

where r is a local radial coordinate in the longitudinal
phase space.

Figure 2: Single bunch simulation showing the phase space
and the phase space projection in time domain for three
different situations.

Figure 3: Beam profile observed in an oscilloscope.

EXPERIMENTAL RESULTS

We performed measurements in order to verify the re-
sults predicted by the theory outlined above.

Island Formation

Using a simulation code [7] we could calculate the longi-
tudinal profile of the beam due to phase modulation. Com-
paring the results in Figures (2) and (3) and we observed
that for frequencies ωm < ωs(2 − ε/2) the profile cor-
responds to the case with three stable regions while when
ωm > ωs(2− ε/2) only two stable regions are created.

Damping of Coherent Synchrotron Oscillations

Measurements of the synchrotron damping time were
performed using a function generator and a phase shifter to
created a longitudinal kick on the beam. Using the signal
from a stripline the phase of the RF component of the beam
was compared with the master RF signal. The damping
time ratio for a single-bunch with phase modulation turned
on and off is shown in Figure (4).

Island Tunes

An FFT of the damping time measurement data shows
a low frequency sideband of the line corresponding to half
of the modulation frequency. Analyzing the behavior of
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Figure 4: Increase in damping time as a function of modu-
lation frequency.

Figure 5: Island frequency as a function of modulation fre-
quency and amplitude. The dots are experimental data and
the curves theoretical results. The first graph (green) corre-
spond to Am = 0.051 rad and in the second graph the blue
results correspond to fm = 50.2 kHz and the red ones to
fm = 49.8 kHz.

this low frequency line we notice that it was related to the
island tune. Figure (5) shows the dependence of the island
frequency on modulation parameters and the corresponding
theoretical values.

Longitudinal Beam Transfer Functions Measure-
ments

Figures (6) and (7) show the results of measurements of
the BTF for a single-bunch with 1 mA and also the results
derived from theory. From the theory the only free param-
eter is the island population (Nc or Ni since Nc + Ni = 1)
which was chosen so that the peaks in the amplitude re-
sponse matched (Figure 7a). The theory agrees well with
experimental results and reproduces some features which
are important to understand the effect as the appearance of
the peaks related to the frequencies of the central and lat-
eral islands. The broadening of the amplitude response, if
compared with the case without phase modulation, reflects
the increase in frequency spread inside the bunch which is
related to the extra amount of damping caused by RF phase
modulation.

CONCLUSION

The results indicate that the mechanism responsible for
damping CBMs instabilities is Landau Damping which is
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Figure 6: Beam transfer function for a single-bunch with-
out phase modulation.
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Figure 7: Beam transfer function for a single-bunch with
phase modulation. The modulation parameters are: Am =
0.051 mrad and fm = 51 kHz, the island population is
Nc=0.3 and Ni=0.7.

enhanced when using phase modulation due to the differ-
ences between the lateral and central islands frequencies.
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