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Abstract

In this paper we report on preliminary results of an ongo-
ing effort at the Brazilian Synchrotron Light Laboratory to
better understand and control the residual transverse cou-
pling in the storage ring. In this work we concentrate on
the correct interpretation of pinhole images, as a mean of
probing beam size and coupling.

INTRODUCTION

The Brazilian Synchrotron Light Laboratory (LNLS) has
recently started filling its storage ring straight sections with
insertion devices. Last year a 2-Tesla Wiggler was suc-
cessfully installed and integrated in the control system. An
elliptically polarizing undulator is now under construction
and scheduled to be installed in the next shutdown, by the
end of the current year. The VUV beamline for the undu-
lator is very demanding with respect to orbit stability and
other beam parameters. Considerable reduction of the ver-
tical emittance via reduction of the transverse coupling is
a must in order for the undulator beamline to achieve its
promised outstanding performance. For this purpose a sys-
tematic study of the residual coupling has been initiated.

Two experimental methods of probing the coupling were
used. The simplest one consists in traditional measure-
ments of tune separation. Although very straightforward in
its interpretation, this method can not be used to give beam-
line users independent on-line information about beam
sizes. In the second method, we used the image of a pinhole
formed on the CCD of a X-ray camera in order to extract
beam parameters such as beam sizes, emittances, global
coupling, coupling angle, etc. This method, contrary to the
first one, gives much more information about the beam but
it also requires a much more elaborate interpretation in or-
der to yield consistent results. In the third section of this
paper we describe our recent efforts in this direction.

MINIMUM TUNE SEPARATION

Traditionally, the estimation of coupling strength in stor-
age rings is done with the measurement of the mini-
mum tune separation. This is accomplished by varying
the optics of the ring in a way that the uncoupled tunes
cross each other. Due to coupling, the actual tunes never
cross and their minimum separation quantifies the coupling
strength[1].

We performed such experiment for low beam currents,≈
30 mA, in two different configurations: opened and closed
wiggler gap. The results are plotted in Fig. 1. In the plot,
each point corresponds to one pair of horizontal and ver-

tical tune shifts. The shifts were chosen in such a way
that the uncoupled tune separation Δ crossed zero. For
each tune shift the quadrupole strengths were slightly re-
adjusted. The coupling calculated from the minimum tune
separation is 0.29 % for opened wiggler gap and 0.88 % for
closed gap. These values do not change significantly when
the same experiment is repeated with beam currents that
are typically supplied to beam-line users in the beginning
of shifts (around 250 mA).
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Figure 1: Measurement of minimum tune separation. Red
points were obtained for a wiggler configuration with
opened gap. Black points correspond to tune measurements
for closed gap. The two upper curves are the horizontal
tunes, whereas the two lower ones are the vertical tunes.

PINHOLE IMAGE

A grid of pinholes is installed in a beam-diagnostic ded-
icated beam-line (DFX) l1 = 8.5 meters away from a
15◦ dipole exit (each LNLS dipole deflects the e-beam by
30◦). Each X-ray pinhole image is converted to a digital-
ized computer image by an in-line c©SESO XBM camera
located at l2 = 12.75 meters from the source.

The pinholes in the grid are circular with a nominal di-
ameter of 30 μm. This value came out from a compromise
between two competing effects that limit the image reso-
lution to 20 μm: the diffraction effects and the shadowing
effect due to the finite size of the pinhole[2].

The digitalized camera image is fitted by a bi-gaussian
function of the form

I(x, z) = B + A exp−1
2

{
x′2

σ2
h

+
z′2

σ2
v

}
, (1)

where the fitting parameters B0, Bx and Bz in the back-
ground term B = B0 + Bxx + Bzz account for spuri-
ous background light intensity, A is the intensity amplitude,
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Figure 2: e-beam sizes extracted from fitting of the pinhole
image. Solid line corresponds to horizontal beam size and
dashed line to the vertical size.

and σh and σv are the e-beam sizes in the axes rotated by
the coupling angle θ:

x′ = (x− x0) cos θ + (z − z0) sin θ

z′ = (z − z0) cos θ − (x − x0) sin θ.

The centroid {x0, z0} is also a fitting parameter. In Fig.2
we plot σh and σv as tunes are varied. The wiggler gap
is closed in this configuration. Far away from the differ-
ence resonance, Δ = 0, the coupling angle is small and
the notation σh and σv is justified: they are respectively
the horizontal and vertical beam sizes. In this situation
the vertical size is very small because the residual verti-
cal emittance should be negligible. As the resonance is ap-
proached, the coupling angle increases and the “horizontal”
size diminishes, whereas the “vertical” one increases. This
is predicted by the theory of linear coupling[1]. However,
very close to the resonance, the two curves display oscilla-
tions that are correlated, indicating that there may be some
non-trivial emittance exchange in this regime. This behav-
ior may be linked to what some authors have discussed
previously[3, 4].

Theory for 2D Source

In this section we will derive the pinhole image that will
be formed at the CCD of the c©SESO camera. We will
compute the image for a 1D source, but the image for the
2D case, in our approximation, can be calculated as the
combination of two separate 1D sources. The radiation in-
tensity at point x2, located at a distance l2 away from the
source, is given by the integral

I(x2) =

∫
dx dx′ dr′ n(x, x′)P (r′ − x′)δp(x(l1))δc(x(l2)), (2)

where n(x, x′) is the particle distribution function at equi-
librium,

n(x, x′) =
n0

2πεx
exp−1

2
H (3)

H(x, x′) = (γxx2 + 2αxxx′ + βxx′2)/εx is the Courant-
Snyder invariant function, εx the equilibrium emittance, δp

is a delta of Dirac, constraining the geometrical ray to pass
through the pinhole at origin, that is, x(l1) ≡ x + r′l1 = 0.
Finally, the function δc , also a delta of Dirac, colects all
radiation incident on the point x2 of interest, since it forces
x(l2) ≡ x + r′l2 − x2 = 0.

The function P (θ) gives the angular distribution of the
radiation intensity. This distribution depends on the e-beam
energy and on the energy range to which the camera is sen-
sitive. The distribution function, however, is very much
collimated in the forward direction of the e-beam move-
ment and can be very well approximated by a gaussian.
There are also filters between the source and the cam-
era that attenuates photons with different energies differ-
ently. To estimate the variance σγ of this gaussian we can
take, as an approximation, the frequency-integrated radia-
tion power. In this case, the variance depends on what plane
we consider. The radiation on the plane of the orbit has
σγ,x = 0.2705/γ and the radiation on the perpendicular
direction has σγ,z = 0.4473/γ, where γ is the relativistic
factor. For the LNLS storage ring, γ ≈ 2681.

The result of the integration in Eq.(2) is a gaussian func-
tion in x2. Its variance is given by

σ2 =
σ2

x

f2

(
1 + C1

(βxγx − α2
x) + C2

)
, (4)

which is the same as the source’s size σ2
x ≡ εxβx, apart

from the geometric factor f ≡ l1/(l2 − l1), and correction
terms

C1 ≡ (σx′/σγ)2/(βxγx)

C2 ≡
(

σx/l1
σγ

)2 {
1− 2(f l̃)αx + (f l̃)2βxγx

}
.

that vanish in the limit of small source size. In the expres-
sions above, l̃ ≡ (l2 − l1)/βx and σx′ ≡ γxεx. Given a
measured σ2, the equilibrium emittance εx can be calcu-
lated from Eq.(4), once the Twiss parameters {αx, βx, γx}
and the beam-line optics {l1, l2} are known. In Table 1 we
list all parameters of the e-beam and of the DXF beam-line
that are relevant for calculating emittances from the fitted
beam sizes. In order to obtain the coupling strength κ from

Table 1: Nominal Beam and Line Optics at the DFX
Parameter Value Parameter Value
βx[m] 0.917 βz[m] 15.27
αx -0.22 αz -3.68
ηx[m] 0.09 ηz[m] ≈ 0
η′

x 0.26 η′
z ≈ 0

σγ,x 0.2705/γ σγ,z 0.4473/γ

E[GeV ] 1.37 σε[%] 0.076
l1[m] 8.5 l2[m] 12.75

e-beam size measurements we first note that, within a sim-
ple theory of linear coupling in which the tunes are sup-
posed to lie close to a difference resonance, νx − νz ≈ 0,
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the ratio between the vertical and horizontal emittances is
related to the coupling strength κ through the following
expression[1]:

εz

εx
=

κ2

κ2 + Δ2
, (5)

where Δ ≡ ν0,x − ν0,z is the uncoupled tunes separation.
But the square of the denominator is just the measured tune
separation δν, so that the equation can be cast into a more
convenient form,

√
εz/εx = |κ| δν−1, from which |κ| can

be extracted from a linear fit. The result of this fit is in
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Figure 3: Fitting of coupling parameter from pinhole im-
age. Notice that close to the resonance the measurement
of the beam size from the pinhole image leads to emittance
oscillations. These points were not considered when fitting
a straight line, only the red points were.

Fig. 3. First thing to notice from the plot is that, away
from resonance (smaller values of δν−1), the points lie on
a straight line and hence the fit is good if it is restricted
to this plot region. For points close to the resonance, the
simple theory described above can not account for the ex-
perimental data. Moreover, despite the fact that away from
the resonance the points seem to lie on a straight line, the
coupling strength given by fitting, which is κ = 0.39%, is
considerably smaller than κ = 0.88% obtained from the
tune separation. A number of possible pitfalls of the analy-
sis we made so far may be raised: first, we did not consider
the pinhole resolution of 20 μm from the measurements of
σ. If this is done, the discrepancy between one measure-
ment of κ and the other does not improve much. Secondly,
the emittances are calculated from the beam sizes assuming
that the Twiss parameters are known. In reality there is al-
ways some uncertainty around the values in Table 1. But in
order to explain the experiments we should have to increase
the ratio βx/βz , for example, three-fold. This explanation
does not seem correct. Thirdly, we did not consider a resid-
ual vertical emittance due to a residual vertical dispersion
function. This effect would change Eq. (5) in a way that
the points in Fig. 3 should not lie on a straight line. This is
not the case, obviously.

A plausible explanation for incorrect predictions of our
simple theory is the fact that dispersion functions have not
been taken into account. They certainly influence the ob-
served e-beam image size. In the next subsection we ana-

lyze how importance this influence is.

Theory for 3D Source

In order to consider the effects of dispersion functions
on the image size, we had to extend the integral in Eq. (2)
to include the beam 6D phase space. In this case, the action
H appearing in Eq. (3) generalizes to

H = Hx(x+ηxε, x′+η′xεx)+Hz(z, z′)+Hε(ε, τ), (6)

whereHx andHz are the two transverse invariant functions
(normalized by the corresponding equilibrium emittances)
and Hε = ε2/σ2

ε + τ2/σ2
τ . The integration over τ in the

generalization of Eq. (2) can be easily done and only renor-
malizes the intensity of the pinhole image. The integration
over ε, on the other hand, introduces an effective action H̃x

for the horizontal phase space[5]:

H̃x = (γ̃x2 + 2α̃xx′ + β̃x′2)/εx, (7)

with

γ̃ = γx − (γxηx + αxη′x)2/G
α̃ = αx − (γxηx + αxη′x)(βxη′x + αxηx)/G
β̃ = βx − (βxη′x + αxηx)2/G

and G ≡ εx(Hx(ηx, η′x) + 1/σ2
ε). For 3D sources the

same equations in the previous subsection apply. Only now
Twiss parameters should be substituted by {α̃, β̃, γ̃}. Note
that in the 3D case β̃γ̃ − α̃2 in Eq. (4) is not unity. The re-
sults from the application of these generalized expressions
to the images of the camera are surprisingly very similar to
the 2D case (Fig. 3) and do not explain the incorrect value
for |κ|.

CONCLUSIONS

At this point we do not understand the difference be-
tween the coupling strength measured from the difference
of tunes and the one extracted from pinhole images. In
our opinion the most probable cause of this discrepancy is
the fact that we performed the integrals over the transverse
phase space separately for each direction. This is not rig-
orously correct since the integrand imposes ties between
the two directions. Also, as the resonance is approached,
the coupling angle increases. The values of σγ,x and σγ,z

should be corrected accordingly. On the other side, pinhole
images reveal a non-trivial emittance exchange very close
to the difference resonance. This effect also requires more
analysis in order to be properly understood.
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