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EXTENDING THE LINEAR LEAST SQUARES PROBLEM FOR ORBIT
CORRECTION IN CIRCULAR ACCELERATORS

C. Scafuri, Sincrotrone Trieste S.C.p.A.

Abstract

A method for extending the linear least squares problem
applicable for correcting the orbit of circular accelerators
is proposed. The method is based on the definition of a
suitable cost function which weighs both orbit deviations
and the correction effort, that is steerer kicks. The paper
presents the full derivation of the formulas and the results
of simulations. The application of this method for the
Global Orbit Feedback system of the Elettra storage ring
is being evaluated.

ORBIT CORRECTION AT ELETTRA

Orbit correction in circular accelerators is a well
understood since it can be formulated in terms of linear
algebra with very good adherence to experimental results.
Two main correction strategies are routinely used at
Elettra: local closed bumps and global corrections by
means of Singular Values Decomposition (SVD). Both are
well known and need no further explanation.

The studies of the new Global Orbit Feedback
system[1] led us to investigate other orbit correction
techniques; in particular we want to test a class of
algorithms that can offer a balance of orbit control of the
and correction effort.

EXTENDED LEAST SQUARES
ALGORITHM

Definition of terms and hypothesis

Let e=(e¢,..., €,) be the vector of readings of the
distorted orbit, where n is the number of beam position
monitors.

Let x=(x,,..., x,) be the vector of corrector kicks,
where m is the number of correctors.

We suppose that the response of the beam orbit to the
corrector kicks is linear; then it can be described with the
machine response matrix R.

Let y=(yi,...,y.) be the vector of orbit displace-
ments due to akick x: y=Rx with R:[nxm]

Correction strategy
In order to find an optimal correction kick we form an
objective or cost function. We choose to form a cost
function in the form of a quadratic function. We weight
the cost of two contributions:
a) the residual orbit distortion:
r=e+y—=e+Rx

(1)

b) the correction effort : x
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Point b), coming from ideas used in management
science and optimal control theory, is the novel point.
Using a quadratic cost function helps us in the calculation
of differentials; on the other hand it also means that we
try to find a compromise between the residual orbit rms
and the kicks rms.

The cost of the residual orbit distortion is defined as:

J=r"Wr 2"

where W is a positive definite n by » matrix. J; is a real
number. The hypothesis on W insures that J,>0 .

The cost of the correction effort is defined as:
J,= x'Kx

2"

where K is a semi positive definite m by m matrix. J>is
a real number. The hypothesis on K insures that J,> 0.

The total cost is thus:

J=J,+J,=r" Wr+x'Kx (3)

The W and K matrices allow us to assign different
weights to the various components of the residual
distortion and correction effort.

Derivation of correction formula

Formula (3), from (1), can be written as:
J=(e+Rx)W(e+Rx)+x"K x
J=(e"W+x"R"W)(e+Rx)+x"K x

J=€"Wetx'R"We+e"WRx+x"R"-WRx+x"Kx (4)

Now we must find the x that minimizes the objective

function. In order to perform the differentiation, we

should remember some results about the differentiation of
quadratic forms (matrix A is square):

O (x" Ax)=(A+A4")x

ox (59
L(x"y)=ay (5")
a—ay(xTA y)=A"x (5™

From (4) and (5), we get:
g—i:RTWe-&-RT W'et(R"WR+R W R)x+(K+K')x  (6)

In order to have a minimum, the Hessian matrix of the
objective function must be a definite positive matrix:
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2
H:Z ‘ﬁ:RT WR+R' W R+K+K'>0
X

(7

The optimal solution is given by the x that zeroes (6),
that is, by solving:

aJ_

ox 0 ®)

If we can find the two weight matrices W and K
satisfying (7), then we can solve (8), the solution is:

x=—(R"WR+R" W' R+ K+K")'R"(W+ WwW'e (9)

The various optimal solutions are found by varying the
W and K matrices.

The existence of a solution for (9) requires that det(H)
is not null. The requirement that H is positive definite is
stronger.

Notice that for W=I and K=0 we find the classical
linear least squares problem. But in this case we have
more insight in choosing the possible trade-offs.

APPLICATION TO ORBIT CORRECTION
IN ASYNCHROTRON RADIATION
SOURCE

In this type of machines one is interested in the
stability of the photon beam at the entrance of the beam
line. The electron beam at the centre of the corresponding
insertion device straight section must be corrected in both
position and angle, with more importance to the angle due
to the amplification determined by length of the optical
path. If we ideally assume that we have 2 BPMs at the
ends of the ky straight section of length /, and that there
are no other magnetic elements that modify the beam
orbit between them, we can calculate the beam position p
and angle « from the BPM readings:

€k, Cret —€, €
=4 :_k k+1
p 5 5 o4 l+_l
or, in matrix form:
1712 1/2|| €
Pl= k
; ‘—1/1 e, (10)

We now have the form of a suitable sub matrix to be
inserted into the W matrix in order to take into account
the cost of photon beam position. The sub matrix is
inserted at position (£, k).

Simulation results

We have carried out some simulations using the
measured horizontal response matrix of the Elettra storage
ring. For our tests we wanted to have a stricter control on
the position and angle of the orbit at the center of the
straight sections between BPM number 43 and 44; for this
purpose, following formula (10), we empirically set the
corresponding W matrix elements to: Wiz 43=10, W4344=10,
Was43=-100, was 44=100. Simulations have been carried out
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using 3 strategies to build the rest of the weight matrix
w:

Case 1): wi=0. See Fig.1. The goal is to control the
orbit only between the 2 said BPMs.
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Figure 1: local orbit control

Case 2): as 1) but with wy,=10, where h are the indexes
of BPM at the sides of an insertion device. See Fig.2. The
goal is to control the orbit only in correspondence of the
insertion device locations.
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Figure 2: orbit control at ID locations

Case 3): as 1) but with wi,=1. See Fig.3. The Goal is to

control the orbit globally.
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Figure 3: gloal orbit control

05 Beam Dynamics and Electromagnetic Fields
D01 Beam Optics - Lattices, Correction Schemes, Transport



Proceedings of EPAC 2006, Edinburgh, Scotland WEPCHO020

In all 3 cases the correction cost matrix K was set to

K=I * 100. The gradient vector is thus:
The results show that the proposed correction scheme
allows us to shape the global correction and concentrate it oJ
in some zones of the ring. The correction effort, measured 3y,
by the rms of the required kicks is for the 3 cases: =x"4
1) 7mA oJ
2) 19mA 3y
3) 127 mA g
As expected the correction effort grows as we increase o ) o
the constraint on the orbit, but remains always very Similarly, the partial derivatives respect to vector x are:
reasonable and well within the limits of our correctors.
0J _ <
7 ~%iY
CONCLUSION o

The proposed algorithm behaves as expected. It is a
global correction scheme, but has the added benefit that
we can that we can very clearly and intuitively distribute

The gradient vector is thus:

the correction effort. It will be tested as an operational oJ
correction scheme with the new Global Orbit Feedback. 0x, p
N e 4
APPENDIX an
X

Demonstration of formulas (5)

Let us start from the expression of a generic bilinear

form: O (x"Ay)=A"x O (xTAp)=4A
3y Sy Ay)=Ay

If m=nwehave: x"A4=4x So we can write:

J=x"Ay A= mxn]
For quadratic forms:
We can also write the bilinear form as:
J=x"Ax  A=[nXn]

n

-

J=2 2 ayx,, O (x"Ax)=(A+A4")x
i=1j=1 ox
The partial derivatives respect to vector y are: REFERENCES
o0 O [1] M. Lonza et al. “Status of the Elettra Global Orbit
W:; a;;%i Feedback Project”, this proceedings.
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