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Abstract 

We use a generalization of the Courant-Snyder method 
to treat charged beam propagation including the fully 
transverse coupled case. We show that the formalism is 
particularly useful to treat problems involving the beam 
optics of electrons propagating in undulators or solenoids. 
The method allows the treatment in analytical terms, we 
generalize the method including the effect of wake fields 
and longitudinal instabilities. The method is then applied 
to a specific example relevant to e-beam emittance 
dilution due to transport and Coherent Synchrotron 
radiation (CSR) effects. 

INTRODUCTION 
The problems associated with the transport of charged 

beam through magnetic lenses are quite an old issue. 
Different methods, ranging from those employing the 
Courant Snyder theory [1] or more modern tools based on 
symplectic integrators[2], can be employed to get reliable 
results. 

Among these, the evolution operator technique [3] 
offers the opportunity of  treating the transport problem 
also including non-linear effects like the CSR  instability 
[4]. 

The method is fairly flexible and allows all the 
advantages of the evolution operator in quantum 
mechanics. It is an ideally suited tool to treat propagation  
in magnetic fields explicitly depending on the 
longitudinal coordinate, as in the case of the fringing field 
in devices like solenoid or helical undulators. 

In this paper we consider the case of a solenoid field 
including the fringing and study its effect on an electron 
beam propagation, we will derive the associated evolution 
operator, which is treated using numerical and analytical 
methods, to study the evolution of its transverse 
dimensions as well as possible emittance distortions. 

The results are then compared to those obtained with 
Parmela, to check the validity of the method. 

PROPAGATION IN HELICAL 
UNDULATORS AND SOLENOIDS 

Let us consider a mechanical system with n degrees of 
freedom, whose evolution is ruled by a Hamiltonian H . 
We will denote the relevant canonical variables with the 
2n-dimensional column vector 
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So that the equation of motion can be written in the form 
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Where M

)
 is a nn 22 × matrix which in the case of a 

quadratic hamiltonian can be written as the product of the 
Hamiltonian and symplectic matrices. 
The solution of eq. (2) can formally be written as 
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Where )(ˆ tU denotes the evolution operator, linked to 
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Where the brackets denote time-ordering necessary 
whenever the Hamiltonian is explicitly time-dependent. 
Quantities of physical interest like the fluctuation tensor 
can be calculated as 

T
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Where oΣ̂ is the fluctuation tensor at the initial times. 
In the case of magnetic transport system the above 

method can be straightforwardly applied and the role of 
the time is played by the longitudinal transport 
coordinate. 

An example of application of the above procedure is 
the evolution of a charged beam through a helical 
undulator. In this case the Hamiltonian writes[5] 
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The above example is quite interesting because it 
combines two optical functions, namely that of a 
quadrupole focusing in both planes and that of a solenoid 
coupling the transverse planes. 

An idea of the evolution of the transverse planes 
Courant-Snyder ellipses is offered by Fig. 1, which shows 
that a kind of emittance transfer between the two planes 
occur when the beam passes through the undulator. 
 

 
Figure 1: evolution of the transverse planes Courant-
Snyder ellipses along helical undulator.  
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This a rather academic example. We did not include 
any non-linear contribution and effects due to the fringing 
field. 

Neglecting for the moment the non-linear contributions, 
we note that the quadrupole and solenoid strengths, 
respectively k  and L , are both “time” independent. This 
is no longer the case if fringing is included, an example of 
map of a measured solenoid field is shown in Fig. 2, 
which shows that the field grows up to a flat top and then 
it decreases in an almost symmetric way. 
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Figure 2: Measured solenoid field (red line) and fringing 
approximation (green line). 

In this case we have to deal with a genuine time 
dependent problem, which can be treated using the 
previously outlined procedure. 

We will treat in detail the case of the solenoid because 
it is a widely exploited device in charged beam 
confinement applications. 

The electron motion equations in such a field can be 
written as [6] 
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Where s denotes the longitudinal propagation variable and 
the primes the derivative with respect to it. The 
introduction of the complex variable  

iyx +=η                                                                     (8) 
Allows to recast (1) in the form 
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Albeit the complex variable and its derivative do not 
represent the canonical quantities of our Hamiltonian 
problem, the previous considerations on the solution tools 
remain unchanged. The solution writes therefore 
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In the forthcoming section we will discuss the solutions 
and the relevant consequences. 

  
DISCUSSION OF THE INTEGRATION 

RESULTS 
Problems of time ordering arise when )(ˆ sM  is 

explicitly time dependent and not self-commuting at 
different times [4], namely when 0)]'(ˆ),(ˆ[ ≠sMsM . 
We can therefore proceed either by using a numerical 
integration or using an analytical procedure. In the case of 
the numerical integration we overcome the time ordering 
difficulties by performing a small step integration i. e. by 
approximating the evolution operator with 
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and then by iterating the solution. 
The results of this numerical analysis is summarized in 

Fig. 3, where we have reported the evolution of the 
transverse coordinates and relevant derivatives with 
respect to the longitudinal coordinate along with a 
comparison obtained with Parmela [7] and the agreement 
has been found to be impressively good. 
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Figure 3: Solenoid longitudinal profile and solution of 
eqs. (7); a) coordinates, b) relevant derivatives with 

The analytical solution has been obtained by noting that 
the solution of the system (9) depends on the solution of 
the second order differential equation 
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Which can be cast in the form  

respect to s, the dots refers to Parmela simulations. 
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The remarkable feature of the previous solution is that the 
functions ),(),,( ashach ξξ  have close analogies with 
the ordinary hyperbolic functions, which greatly simplify 
the algebraic manipulations. 

Albeit useful the use of the analytical solutions 
confirms the results given in Fig. (3) and do not add any 
new practical information. 

 
CONCLUDING REMARKS 

The method can be extended to transport with beam 
instability effects. 

The coherent synchrotron radiation instability (CSRI) is 
one of the main problems limiting the performance of 
high intensity electron accelerators. From the theoretical 
point of view the effect can be studied using the Vlasov 
equation cast in the form[8] 
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with 
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is the wake field potential and )(|| zW  is the wake 
function corresponding to the steady state radiation of an 
ultra relativistic particle in a long magnet. 
If we interpret H  as 
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A Hamiltonian operator awe can rewrite eq. (17) in the 
form 
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With this assumption the equation can be formally solved 
as 
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But the problem may be complicated, not only by the time 
ordering effects but also by the fact that the 
“Hamiltonian” operator is non-linear, since it depends, 

through the wake-field, on the beam distribution ρ  (see 
eq. 18). 

This last problem can be overcome by a time 
discretisation step and by calculating the wake field at the 
step preceding the evaluation of the distribution. 

Accordingly one is able to provide the evolution of a 
beam undergoing a CSRI as shown in Fig. 4, where we 
have shown the beam longitudinal distribution and the 
relevant longitudinal phase-space portraits, at the 
beginning and at the end of the interaction Fig. 5. 
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Figure 4: Evolution of the normalized longitudinal 
distribution for  different values of the coordinate s  with 
and without CSR instability. 
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Figure 5: Phase space distribution at the beginning (a) and 
at the end (b) of the evolution. 
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