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Abstract
The matrix formulation for linearly coupled betatron

motion in circular accelerators is presented. In the formu-

lation the analytical representations for the lattice functions

and the coupling matrix are derived.

INTRODUCTION
Linear coupled motion in a circular accelerator was

successfully parametrized through the transfer matrix ap-

proach, where normal mode Twiss and coupling parameters

are defined as an extension of Courand and Snyder formu-

lation. However it is not straightforward to assign analyti-

cal expressions to the coupling parameters. On the other

hand the coupled motion was analytically solved by the

Hamilton perturbation theory, which ingeniously describes

the resonance phenomena. In the perturbation theory, how-

ever, the symplectic structure of the coupled motion is ob-

scure in turn. Hence, for the purpose of combining both

the theories with each other with keeping the respective

virtues, we develop the matrix formulation based on the

Hamilton perturbation theory.

Since we have already known the solution of equation of

motion, we can construct the transfer matrix in terms of the

solution. Thus we formulate the betatron motion with lin-

ear coupling resonance in analytic and symplectic manner.

As an application of the formulation, we investigate the

two-dimensional beam ellipse in an electron storage ring.

FORMULATION
The Hamiltonian H describing the coupled betatron mo-

tion in two-dimension is given by

H = H0 + H1, (1)

where H0 is the unperturbed Hamiltonian for the betatron

motion

H0 =
1
2

[
p2

x + p2
y + Gx (s)x2 + Gy (s) y2

]
, (2)

and H1 is the perturbed Hamiltonian giving the coupling

between the transverse oscillations

H1 (x, px, y, py) = K (s)xy. (3)

Here Gx,y’s are the coefficients of the restoring potentials

and K is that of the coupling one. The solution for the

equation of motion for the unperturbed Hamiltonian H0 is

z0 (s) = azw0 (s) + c.c.,

pz,0 (s) = azw
′
0 (s) + c.c.,
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where c.c. denotes complex conjugate of the preceding

term and

w0 (s) ≡
√

βz (s)
2

eiφz(s), φz (s) ≡
∫ s

0

ds̃

βz (s̃)
(4)

with w = u, v for z = x, y, respectively. While the com-

plex amplitudes az’s are constant for unperturbed motion,

they becomes dependent on s for coupled one, whose equa-

tion of motion is given by

a′z = i∂H1/∂āz (5)

with the symbol ¯ indicating the complex conjugate. Then

the perturbing Hamiltonian H1 is expressed in terms of new

variables az’s

H1 = [h+ (s) axay + c.c.] + [h− (s) axāy + c.c.] , (6)

where

h± (s) =
1
2
K (s)

√
βx (s)βy (s)ei[φx(s)±φy(s)]. (7)

The source of the perturbing Hamiltonian is random er-

ror of optics functions so that the coupling effect distorts

the beam behavior very little except for the case that the

errors resonates to the beam motion. On the other hand,

in the case near resonance the small distortion can act co-

herently on the beam and give the significant effect. Then,

near the differential resonance the perturbing Hamiltonian

H1 can be approximated as [1]

H1 =
π

L

(
Caxāye2πiΔs/L + Cāxaye−2πiΔs/L

)
, (8)

where C is the coupling driving term for differential reso-

nance

C =
1
2π

∮
ds

√
βx (s) βy (s)K (s) eiΦ(s)

with Φ(s) = φx (s)−φy (s)−2πΔs/L, and Δ the distance

from resonance Δ = νx − νy − q with an integer q, and L
the circumference. Solving the equation of motion for the

amplitudes ax and ay, we have [1]

ax = A1e
−2πiν1s/L + A2e

−2πiν2s/L, (9)

ay =
C

2

(
A1

ν2
e2πiν2s/L +

A2

ν1
e2πiν1s/L

)
, (10)

where A1,2 are integration constants, and

ν1,2 =
1
2

(
Δ±

√
Δ2 + |C|2

)
. (11)
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By the Hamilton perturbation theory, we can get the an-

alytical solution for the coupled betatron motion. From the

solution we can derive the transfer matrix describing the 2-

dimesntional betatron oscillation. Solving the integration

constants for the initial condition, we obtain the transfer

matrix
�X (s) = M (s, s0) �X (s0) . (12)

Decomposing the one turn transfer matrix

M (s0 + L, s0) =
(

Mxx Mxy

Myx Myy

)
(13)

into the 2-by-2 matrix form, we find that the element ma-

trices are given by

Mxx =
1

ν1 − ν2
(−ν2Mx1 + ν1Mx2) ,

Myy =
1

ν1 − ν2
(−ν2My1 + ν1My2) ,

Mxy =
1

2 (ν1 − ν2)

×
[
N (s)

xy {− sin 2π (νx − ν1) + sin 2π (νx − ν2)}

+N (c)
xy {cos 2π (νx − ν1)− cos 2π (νx − ν2)}

]
,

Myx =
1

2 (ν1 − ν2)

×
[
N (s)

yx {sin 2π (νy + ν1)− sin 2π (νy + ν2)}

+N (c)
yx {cos 2π (νy + ν1)− cos 2π (νy + ν2)}

]
,

and

Mxj = I cos 2π (νx − νj) + Jx sin 2π (νx − νj) ,

Myj = I cos 2π (νy + νj) + Jy sin 2π (νy + νj) ,

N (s)
xy = E−1

x (ciI + crS)Ey,

N (c)
xy = E−1

x (−crI + ciS)Ey,

N (s)
yx = E−1

y (−ciI + crS)Ex,

N (c)
yx = −E−1

y (crI + ciS)Ex,

where I is the identity matrix, S =
(

0 1
−1 0

)
the unit

anti-symmetric one, Jz =
(

αz βz

−γz −αz

)
the Twiss ma-

trices, and Ez =
(

1/
√

βz 0
αz/

√
βz

√
βz

)
the normalization

ones, and cr and ci respectively the real and imaginary

parts of the coupling driving term C, and j = 1, 2. Here

we denote the 4-by-4 (2-by-2) matrix by the bold (light)

capital letter.

Following Edwards and Teng [2, 3], we introduce the

symplectic rotation matix T

T =
(

τI ST tS
T τI

)
(14)

with

τ2 + Det (T ) = 1, (15)

which can diagonalize the transfer matrix (13). In the case

of Δ ≥ 0, we can solve the symplectic rotation matrix T in

terms of the lattice parameters as

T = τ

(
I − 1

2ν1
N

(c)
xy

− 1
2ν1

N
(c)
yx I

)
(16)

with τ =
√

ν1/ (ν1 − ν2). It can be confirmed that the

transfer matrix M is certainly diagonalized by T:

TMT−1 =
(

Mx2 O
O My2

)
. (17)

For Δ < 0 we choose τ =
√−ν2/ (ν1 − ν2) and have the

symplectic rotation matrix

T = τ

(
I − 1

2ν2
N

(c)
xy

− 1
2ν2

N
(c)
yx I

)
(18)

and the normal form of the transfer matrix

TMT−1 =
(

Mx1 O
O My1

)
. (19)

Thus we derive the analytical representation for the transfer

matrix describing the coupled betatron motion. Using the

representation, we obtain the explicit form of the Edward-

Teng parametrization of the transfer matrix for two dimen-

sional coupled motion. Note that the symplectic rotation

matrix T gives the coordinate transformation from the real

phase space (x, px, y, py) to the normal one (u, pu, v, pv).

APPLICATION TO BEAM ENVELOPE
In the normal coordinate the coupled betatron motion is

completely split, and each mode is a free betatron oscilla-

tion. Since in electron storage rings the equilibrium beam

distribution is well described by the Gaussian, the distribu-

tion function is given by

ρ (u, pu, v, pv) =
1

4π2εuεv
exp

(
− a2

u

2εu
− a2

v

2εv

)
. (20)

Here εu,v are the respective emittances for normal modes,

which are easily derived by the present matrix formulation

and then represented by the natural emittance ε0 as

εu =
ν1

ν1 − ν2
ε0, εv =

−ν2

ν1 − ν2
ε0. (21)

Furthermore, the matrix formulation tells us that the invari-

ant amplitude au,v are defined as

a2
w = βzw

2 + 2αzwpw + γzp
2
w, (22)

where w = u, v for z = x, y, respectively.

Moving from the normal coordinate to the real coordi-

nate, we derive the beam distribution in real phase space.
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The beam envelope is described by the projection of the

phase space distribution on the real space, which is given

by the integration of the beam distribution over the mo-

menta px,y

ρ̃ (x, y) = Rexp
[
−2π

√
βxβyRF (x, y)

]
, (23)

where R is the normalization factor

R =
(ν1 − ν2)

2

2πε0

√
βxβy

[
2 (ν2

1 + ν2
2)− c2

r

|C|2 (ν1 + ν2)
2
] ,

and

F (x, y) =
x2

βx
− 2cr (ν1 + ν2)
|C|2 √

βxβy

xy +
2

(
ν2
1 + ν2

2

)
|C|2 βy

y2.

The parameters characterizing the beam ellipse, the hori-

zontal and vertical beam sizes and the tilt angle, are then

given respectively as

σ2
x =

Δ2 + 1
2 |C|2

Δ2 + |C|2 βxε0, (24)

σ2
y =

1
2 |C|2

Δ2 + |C|2 βyε0, (25)

tan 2θ =
2cr

√
βxβyΔ

2βxΔ2 + (βx − βy) |C|2 . (26)

Now we compare the present formula with the experi-

ment at the SPring-8 storage ring, which is the third gen-

eration synchrotron light source. We routinely perform the

tune survey in order to investigate the status of the storage

ring optics. In the tune survey we change the horizontal

tune with fixing the vertical. At the same time we measure

the beam profile by means of the visible light interferome-

ter [4] and the x-ray beam profile monitor [5].
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Figure 1: Tune difference.

Figure 1 shows the dependence of the difference of the

measured tunes on the distance from the nearest neighbor

differential resonance. As found from Eqs. (17) and (19)

with (11), the minimum difference of the tunes gives the

strength of the resonance |C|, which is estimated to be

0.0032 in the experiment. The solid line in the figure indi-

cates the expected tune difference by the perturbation the-

ory with the single resonance approximation.
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Figure 2: Beam ellipse parameters.

The beam ellipse parameters are shown in Fig. 2. Know-

ing the strength of the resonance and using the formula for

the ellipse parameters (24)-(26), we can estimate the pa-

rameters, which are shown by the solid lines. Note that the

contribution of the energy spread to the horizontal beam

size is included due to the non-zero dispersion function at

the source points for the monitors. It is emphasized that

the unknown real part of the coupling driving term C is

determined by the best fit to the experiment.

SUMMARY
In this paper we explicitly construct the symplectic rota-

tion matrix for the coupled betatron motion with the help

of the perturbation theory with a single resonance approx-

imation. The lattice parameters of the coupled system are

expressed by the lattice function of the unperturbed system.

Using the matrix, we derive the formula for the beam el-

lipse parameters, which are compared with the experiment.

The measurement result asserts the validity of the present

formalism for the coupled betatron motion.
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