
ON THE IMPLEMENTATION OF EXPERIMENTAL SOLENOIDS IN
MAD-X AND THEIR EFFECT ON COUPLING IN THE LHC

A. Koschik, H. Burkhardt, T. Risselada, F. Schmidt, CERN, Geneva, Switzerland

Abstract

The betatron coupling introduced by the experimental
solenoids in the LHC is small at injection and negligible
at collision energy. We present a study of these effects and
look at possible corrections. Additionally we report about
the implementation of solenoids in the MAD-X program.
A thin solenoid version is also made available for tracking
purposes.

INTRODUCTION

The transverse coupling introduced by an experimental
solenoid in the LHC can be quantified [1] by the complex
coupling coefficient c,
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where Bsl is the integrated solenoid field strength and Bρ
the beam rigidity. β∗

z=x|y denotes the beta function value
at the center of the solenoid, which is the IP (interaction
point). The LHC is designed to operate with round beams,
hence β∗

x = β∗
y and the sum coupling resonance (c+

sol = 0)
is not exited. At injection energy (450 GeV), where the
effect is most pronounced, this coefficient amounts to

c−CMS, 450 GeV = − i
2π

Bsl

Bρ
= −0.0053 i, (2)

for the strongest experimental solenoid (CMS-magnet).
This is small and other sources of coupling, in particular
the a2 errors in the main dipoles are expected to give a
coupling coefficient which is more than one order of mag-
nitude larger. A global coupling correction for the whole
machine is planned [2]. The solenoidal effects are too small
to justify dedicated magnets for local solenoid compensa-
tion. Still, it may be desirable to allow to adjust coupling
separately for each solenoid which may be turned on or off.

An optics design code such as MADX [3] can be used
to study the coupling effects. Several recent developments
in MADX concerning solenoids have been done, in par-
ticular tracking with solenoids can be performed and the
use of PTC allows to compute the coupled lattice functions
defined by Ripken [4]. Implementation details regarding
solenoids will be discussed in the last section.

Relevant LHC (beam) parameters are summarized in
Tab. 1, values referring to the experimental solenoids are
given in Tab. 2. A schematic layout of the IP5 region
(CMS) and its optics is depicted in Fig. 1.

Table 1: LHC general parameters
Parameter Inj. Coll.

Momentum p [GeV/c] 450 7000
Trans. norm. emittance εN [μm rad] 3.5 3.75
Horizontal Tune Qx 64.28 64.31
Vertical Tune Qy 59.31 59.32
Max. β H/V (cell) βmax. [m] 177/180
Min. β H/V (cell) βmin. [m] 30/30
Average β (= R/Q) 〈β〉 [m] 66/72
Max. Dispersion H/V (cell) Dmax. [m] 2.018/0.0
RMS beam size IP5 σrms [μm] 375.2 16.7
Half crossing angle IP1/IP5 [μrad] ± 160 ± 142.5
Half parallel separation IP1/IP5 [mm] ± 2.5 0.0
Plane of crossing IP1 vertical
Plane of crossing IP5 horizontal
β at IP1/IP5 β∗ [m] 17 0.55
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Figure 1: LHC IP5 (CMS) layout and optics.

COUPLING CORRECTION

There are different strategies to compensate coupling in
an accelerator. A solenoid modifies the transverse oscilla-
tion modes and rotates the beams by an angle θ = Bsl

2Bρ . A
compensation should eliminate or minimize these effects.
An obvious solution is the use of anti-solenoids left and
right of the main solenoids. This is not practical for high
energy machines with very large solenoids like the LHC.

Another standard technique is based on the use of skew
quadrupoles. This resonance method [1] uses Hamiltonian
formalism and treats the coupling fields as a perturbation
of the uncoupled optics. The skew quadrupoles are placed
and adjusted such that the main resonance coupling terms
disappear.
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Figure 2: LHC IP5 layout. CMS solenoid (XSOL) and nearby skew quadrupoles (MQSX)

LHC AND SOLENOIDS

In the LHC a global coupling correction scheme will be
used to minimize the impact of field imperfections and tilt
errors on the beam quality [2]. We now look at the effect
of the strongest LHC experimental solenoid (CMS, IP5) on
beam optics at 450 GeV.

At injection energy (450 GeV) beams will generally be
separated by means of separation bumps. Additionally, the
beams cross from inside to outside and vice versa at each
IP. The solenoid field slightly tilts the crossing plane. The
half separation of the two beams is decreased by 15 μm,
which is less than 1 % of the nominal separation. If no
separation bumps are used, e.g. in an early collision run
at 450 GeV, the solenoid will introduce a separation of this
order. This can easily be corrected by adjusting the separa-
tion bumps.

Table 2: Parameters of experimental solenoids in LHC

Property/Experiment ATLAS CMS

Magnetic induction at IP [T] 2.0 4.0
Coil length [m] 5.3 12.5

The β-beating which is induced by the CMS solenoid is
shown for the LHC machine in Fig. 3. The peak β-beating
(Δβ/β)peak = 0.1 % is well below and within the ac-
cepted margin [5] of 21 %.

Equally the dispersion beating is well within the bud-
get of 30 %. To analyze we use the normalized dispersion
function Dx|y,N = Dx|y/

√
βx|y,

ΔDx(s)√
βx(s)

/
Dx,qf√
βx,qf

and
ΔDy(s)√

βy(s)

/
Dy,qd√
βy,qd

, (3)

where Dx,qf = 2.1 m, Dy,qd = 16 cm and βx,qf =
βy,qd = 180 m. The peak dispersion beating expressed in
these quantities amounts to Dx,N/Dx,qf,N = 0.2 % and
Dy,N/Dy,qd,N = 2.5 %.

To summarize, we can say that the impact on beam optics
is small and will hardly be visible in standard operation.

We note, that the local solenoid compensation used in
LEP with two skew quadrupole pairs relied on the symme-
try of the optical functions around the IP [6]. This scheme
cannot simply be employed for the antisymmetric LHC op-
tics.
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Figure 3: Induced β- and dispersion-beating by the CMS
solenoid in the LHC at 450 GeV.

SOLENOIDS AND MAD-X

Following a request on the last MADX day [7], we im-
plemented a thin solenoid in the tracking module as well
as in the twiss module. A thick version was available al-
ready, however since the tracking module exclusively oper-
ates with thin elements, this became necessary.

The implementation follows closely the formulae given
in [8], where the canonical equations of motion are derived
directly from the Hamiltonian. We only report the relevant
formulae here and note some important facts:

• The hard-edge model is used. Fringe fields of the
solenoid are taken into account, however they are fi-
nite ’hard-edge’ steps of the B-field;

• the solution of the equations of motion are obtained
from the expanded Hamiltonian, and it that sense the
solutions or not ’exact’;

• and although this is a thin element, both the normal-
ized magnetic strength ks and its product ks · L with
the length L have to be known and used in the equa-
tions. This makes the solenoid different from e.g. the
multipoles.

If zi, zf denote initial and final (canonical) coordinates,
where z ∈ [x, px, y, py, σ, pσ], we can write the solution of
the equations of motion in a solenoid of length L = Δs in
the thin-lens approximation as

xf = xi · cosΔΘ + yi · sin ΔΘ,

pf
x = p̂f

x · cosΔΘ + p̂f
y · sin ΔΘ,

yf = −xi · sin ΔΘ + yi · cosΔΘ,

pf
y = −p̂f

x · sin ΔΘ + p̂f
y · cosΔΘ,

σf = σ̂f +
{
xi · p̂f

y + yi · p̂f
x

}
· H(s0) ·Δs

[1 + f(pi
σ)]2

· f ′(pi
σ),

pf
σ = pi

σ,

(4)
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where the intermediate variables ẑ are given by

p̂f
x = pi

x −
xi

[1 + f(pi
σ)]

·H(s0)2 ·Δs,

p̂f
y = pi

y −
yi

[1 + f(pi
σ)]

·H(s0)2 ·Δs,

σ̂f = σi − f ′(pi
σ)

[1 + f(pi
σ)]2

·H(s0)2 ·Δs · 1
2

{
(xi)2 + (yi)2

}
.

(5)

The normalized solenoid strength ks = e·B
p0·c is related to

H(s0) by

H(s0) =
1
2

e

p0 · c
· Bs(0, 0, s0) =

1
2
· ks. (6)

H(s0) is not the Hamiltonian, but an abbreviation for the
expression defined above, see also [8, (2.23e, p.9)]. Ac-
cordingly the quantity ΔΘ is then related to ksi = ks · L
(= ks ·Δs to conform to the notation in [8]) and given by

H(s0) ·Δs =
1
2
ksi,

ΔΘ =
H(s0) ·Δs

[1 + f(pi
σ)]

.
(7)

RIPKEN [8] uses the function f(pσ) to stress the fact
that the relative momentum deviation Δp/p0 depends on
the longitudinal canonical variable pσ. It is given by

f(pσ) =
√

1 + 2pσ + β2p2
σ − 1,

f ′(pσ) =
1 + β2pσ√

1 + 2pσ + β2p2
σ

.
(8)

There is an important difference in the set of canonical
variables used in MADX and by RIPKEN [8], but noting
that

pσ =
pT

β
,

σ = β · T,
(9)

where (T, pT ) are the longitudinal variables used in
MADX and β is the relativistic quantity of the beam,
we can completely integrate the formulae from [8] into
MADX.

The transverse transport map can also be written in ma-
trix form, where we use K = ks/2.

Mthin, sol =
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·
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5

| {z }

focusing in both planes

(10)

The last decomposition of the thin-lens solenoid trans-
fer matrix shows, that it can be separated into a pure rota-
tional part, which refers to the solenoid body without any
edge effects and a focusing part, which give the effect of the
fringe fields. It should be also apparent, that slicing a thick
solenoid into several thin ones and replacing the effect of
the thick solenoid by

Mthick, sol ≈ MDrift·Mthin, sol·MDrift . . . MDrift·Mthin, sol·MDrift

does in general not give the correct edge focusing effect.
However, it can be shown numerically that such a slicing
converges to the thick lens solution.

It should be noted that the Hamiltonian for the solenoid
can also be solved exactly, see e.g. [9], however, the so-
lution is not symplectic. Therefore the solution from the
expanded Hamiltonian is used.

CONCLUSION AND OUTLOOK

Solenoid coupling effects in the LHC are small and
global compensation at injection should be sufficient. We
discussed the size of the effects and propose a global com-
pensation which allows to correct each solenoid individu-
ally. We also reported on the status and implementation of
solenoids in MADX.
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