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Abstract

Matrix formalism has been a powerful tool for beam op-
tics designs. It not only facilitates computations but also
plays an important role in formulating various design con-
cepts. Here we extend the standard matrix formalism for
the purpose of designing an optics that transports space-
charge-dominated intense beam. Furthermore, we explore
the concept of current-independent optics, which can be
useful for systems such as high-brightness injectors and
space-charge-dominated rings. Our discussion here is pre-
liminary and limited to axisymmetric systems.

INTRODUCTION

Space-charged-dominated beams are encountered as
high intensity and high brightness are pursued for demand-
ing applications, such as high-brightness beams out of
rf photoinjectors for SASE FELs. Because of collective
space-charge forces, the dynamics of such a beam is in-
trinsically complicated and often beyond analytical treat-
ments. However, under conditions that yield high-quality
well-behaved beams, the transverse dynamics is usually
dominated by the beam-envelope equation

σ̂′′ +
κ

β2
r γ2

r

σ̂ − κs

β2
r γ2

r

1
σ̂
− ε2n

σ̂3
= 0. (1)

Here, for simplicity and having in mind applications for rf
photoinjectors, we consider axisymmetric systems and use
the reduced coordinates σ̂ =

√
βrγr σ, where βrγr is the

dimensionless momentum of the reference particle and σ is
the rms beam size. κ is the external focusing strength due to
solenoid as well as ponderomotive rf focusing, κs is beam
perveance, and εn is the normalized rms emittance. For a
space-charge-dominated beam, the emittance term is much
smaller than the space-charge term and thus can be omitted.
To produce and/or transport high-intensity high-brightness
beams, much of the design works involve exploring the so-
lutions of the envelope equation and searching for suitable
configurations to yield a desired solution. Our interest here
is to develop a matrix formalism to facilitate such design ef-
forts. Matrix formalism has been a powerful tool for beam
optics designs based on Hill’s equation. It not only facili-
tates computations but also helps to formulate various de-
sign concepts with elegance and simplicity.

As an apparent nonlinear equation, the envelope equa-
tion defies the simple matrix approach in general. How-
ever, for space-charge-dominated laminar flow with con-
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stant κ and κs, it has been shown that the preferred mode
of transport is the (quasi-) equilibrium solution

σ̄ =
√

κs/κ, σ̄′ = 0, (2)

which is known as Brillouin flow for nonaccelerating beam
[1] and invariant envelope for accelerating beam [2, 3].
Thus a matrix formalism can be used to describe envelop
evolution in the neighborhood of the equilibrium solution.
Often the external focusing κ and space-charge defocus-
ing κs can be treated as piecewise constant, which makes a
thick-element matrix approach more attractive.

Close to the equilibrium, small deviations propagate lin-
early by certain matrix R as (δσ̂, δσ̂ ′)T = R (δσ̂0, δσ̂

′
0)T ,

i.e.,
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]
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For space-charge-dominated beams, the matrix R has one
important property—that it is determined by external fo-
cusing and independent of space-charge force [3]. By ex-
tending the beam state vector, we can put the inhomoge-
neous part into an extra dimension as
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With the Brillouin flow as the reference orbit σ̄, Eq. (4) can
further be written as
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(5)
This equation has the important property that the beam is
represented by the vector [ σ̂, σ̂ ′,

√
κs ] while the transport

channel is represented by a transfer matrix M that is cur-
rent independent (in fact, beam independent except for ref-
erence energy). Obviously, the significance of

√
κs is due

to the fact that, dividing beam envelope by
√

κs, the scaled
space-charge-dominated envelope equation becomes cur-
rent (perveance) independent. Note that the

√
κs and as-

sociated matrix elements play a role similar to the energy
deviation and dispersion function in the standard matrix
formalism for optics design, that is, to take into account
the inhomogeneous part of a linear differential equation.

MATRICES FOR BASIC ELEMENTS

There are three basic types of elements/sections com-
monly encountered in axisymmetric systems such as rf
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photoinjectors: 1) drift – free space with space-charge
defocusing; 2) solenoid – to provide focusing to balance
space-charge defocusing; 3) accelerating section – to pro-
vide acceleration while balancing space-charge defocusing
by rf focusing (with or without additional solenoid focus-
ing). In addition, a simple matrix can be used to advance
the perveance if necessary.

Uniform Acceleration with Balanced Focusing

To the linear order of small deviation from the equilib-
rium, the beam envelope equation gives

δσ̂′′ +
2κ

β2
r γ2

r

δσ̂ = 0. (6)

With βr � 1 and γr = γ0 + γ′r(s− s0), the transfer matrix
is given by

R =

⎡

⎣
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γ
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�γ′ sinu

− �γ′
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⎤

⎦,

(7)
where u = � ln(γr/γ0) with � =

√
2κ/γ′2r − 1/4 .

No Acceleration and Balanced Focusing

Inside a solenoid, there is no acceleration. Taking the
limit γ′ → 0 with γr = γ0, u →

√
2κΔs/γ0 in the above

R matrix yields

Rsol =
[

cos(kL) 1
k sin(kL)

−k sin(kL) cos(kL)

]
, k =

√
2κ

γ0
, (8)

where L is the solenoid length. This quadrupole-like trans-
fer matrix is obvious from Eq. (6) with constant coefficient.
This is the same matrix as for a single particle except the
extra

√
2 in k.

Free Space with Beam Spreading

Unlike for a single particle, free space with space charge
is challenging in the sense that there is no external focusing
to balance the space-charge defocusing, and thus there is no
equilibrium. Instead, a focused beam reaches a waist and
then spreads out under its own force. Furthermore, the de-
focusing depends on the beam size, thus any transfer matrix
will be beam-size dependent. Nonetheless, we will cast the
envelope evolutions nearby a reference envelope in a ma-
trix form to complete the matrix formalism. The envelope
equation in free space can be reduced to the universal form

τ ′′ − 1
τ

= 0, with τ =
σ̂√

κs/βrγr
. (9)

It has the general solution

Δs√
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= ±
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2
√

ln x
, (10)

where τw is the waist and Δs is the distance from the waist.
Using the general solution, evolutions nearby a reference
envelope τ̄ can be approximated as τ(τ̄0 +δτ0, τ̄

′
0 +δτ ′0) =

τ̄ (τ̄0, τ̄
′
0) + (∂τ0 τ̄ )δτ0 + (∂τ ′

0
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form as in Eq. (5) we have
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To compute the derivatives on the reference envelope, we
can take partial derivatives on both sides of the general
solution in Eq. (10) and obtain ∂τ0τ = (τ − τ ′s)/τ0 and
∂τ ′

0
τ = τ0τ

′− τ ′0(τ − τ ′s). Thus the envelope propagation
matrix becomes

Mdrift =

⎡

⎢
⎢
⎣

τ̄−τ̄ ′s
τ̄0

τ̄0τ̄
′ − τ̄ ′0(τ̄ − τ̄ ′s) ξ

− s
τ̄0τ̄

τ̄0+τ̄ ′
0s

τ̄ ξ′

0 0 1

⎤

⎥
⎥
⎦ , (12)

where

ξ =
1

βγ

[
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]
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.

Note that the second row can be obtained from the first one
by differentiating with respect to s and replacing τ ′′ with
Eq. (9). Given the initial values τ̄0 and τ̄ ′0, the full refer-
ence orbit can be obtained with Eq. (10), and the evolution
of nearby orbits is given by the above transfer matrix. Of
particular interest (because beam waist is a preferred loca-
tion for matching), the transfer matrix to the waist reads
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(13)
where τ̄w = τ̄0e

−τ̄ ′
0
2/2 is the beam waist, and sw is the

distance to the waist given by

sw

τ̄w
= ±

∫ τ̄0/τ̄w

1

dx√
2 lnx

� ±
√

(τ̄0/τ̄w + 2)2

3
− 3 .

CURRENT-INDEPENDENT OPTICS

A space-charge dominated bunch can often be treated
as an ensemble of mostly-independent longitudinal slices
that evolve differently according to the envelope equation
with their own slice perveances. Such differences result in
a large total effective emittance even though each individ-
ual slice preserves a low emittance. An important exam-
ple is the high-intensity and high-brightness rf photoinjec-
tors. To avoid such problems, it is desirable to make the
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beam optics independent of slice perveance, i.e., current-
independent. From the rms envelope emittance ε rms =√
〈σ̂2〉〈σ̂′2〉 − 〈σ̂σ̂′〉2, we see that, in order to zero the

emittance, either both coordinates be current-independent
or σ̂′ = 0 independent of current. Viewed through the ma-
trix formalism, a current-independent optics has the special
property

M13 = 0 and/or M23 = 0. (14)

Clearly this can not be achieved everywhere, but may be
possible for a certain well-designed section (similar to the
design of dispersion-free optics or an achromat).

Although our motivation is to study emittance com-
pensation in rf photoinjectors, current-independent optics
could be useful in other applications.

HIGH-BRIGHTNESS RF GUN EXAMPLE

To test the matrix formalism, we used an optimized
SPARC [4] photoinjector design as an example. External
field and beam perveance information are extracted from
HOMDYN [5] simulation outputs and are summarized in
Fig. 1. The reduced envelope for the center slice is also
extracted and plotted in Fig. 2. Using these data we con-
structed envelope transfer matrices for each small step, then
tracked the beam envelope with initial conditions taken
from corresponding HOMDYN output. In the emittance-
compensation solenoid, the envelope is so far away from
the equilibrium that Eq. (8) can not be used. Thus we have
extended the approach used for the free-space matrix to
treat this solenoid. Figure 2 shows two tracked envelopes.
One starts 1.5 cm away from the cathode, another starts at
the solenoid for emittance compensation (8 cm from the
cathode). We see that the matrix calculation agrees well
with HOMDYN initially, but errors accumulate. Around
the beginning of the solenoid where the first and second
tracking overlap, the first tracking is rather close to the
HOMDYN result but not enough for tracking through the
following sections. Further improvement is being pursued.
Higher-order matrices may be necessary.
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Figure 1: Focusing strength κ and perveance κs for the
center slice. SPARC design courtesy of M. Ferrario.

In emittance-compensated split photoinjectors, it is de-
sirable to match all slices onto their equilibrium envelopes
in the booster at the beam waist in the drift. Since this
may not be feasible, matching is done in the rms sense. In
addition, in order to minimize emittance, all slices should
satisfy σ̂′ = 0 at the entrance of the booster independent of
slice currents. In terms of the gun transfer matrix G from
the cathode to the beam waist, the criteria for emittance
compensation is current-independent transport with

σ̂′w = G21σ̂c + G22σ̂
′
c = 0 and G23 = 0, (15)

where σ̂c and σ̂′c are the initial conditions at the cathode.
The first condition is required to match the beam onto the
equilibrium flow (with σ̂ ′ = 0) in the booster. The second
condition is the current-independent requirement to mini-
mize the emittance. It is interesting to see how well this
condition holds in practice. Unfortunately, since we have
not yet obtained the envelope transfer matrices from the
cathode all the way to the waist in the drift, this condition
has not been tested with simulations. Further investigations
are being pursued.

There are two algebraic equations to fulfill in Eq. (15),
so at least two controlling knobs are needed to adjust the
matrix elements. Since a focused beam in drift will natu-
rally come to a waist with σ̂′w = 0, the current-independent
condition is most demanding and controlled mainly by the
solenoid for emittance compensation.

Special thanks to M. Ferrario for the SPARC simulation.
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Figure 2: Comparison of reduced envelope calculations for
the center slice.
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