
IMPLEMENTATION OF TPSA IN THE MATHEMATICA CODE LieMath

D. Kaltchev, TRIUMF, Vancouver B.C., Canada

Abstract

The Lie Algebra package LieMath written in the Math-
ematica language constructs the beamline map in a single-
exponent Lie generator form. The algorithm (a BCH-based
map concatenation) has been recently enhanced with Trun-
cated Power Series Algebra (TPSA) techniques. The poly-
nomials produced by the series expansion of the Hamil-
tonian are replaced with arrays of coefficients (derivative
structures) and the Poisson bracket and BCH are defined as
operations on such structures. We have confirmed the state-
ment that using automatic differentiation instead of sym-
bolic operations increases the speed by least an order of
magnitude. The code is equipped with a MAD parser and
a normal form block allowing it to extract nonlinear chro-
maticity and amplitude detuning. The notebook was ap-
plied in FFAG studies and may be useful for the linear col-
lider final focus or collimation systems.

INTRODUCTION

In the BCH-based map concatenation, the computation-
ally intensive part is calculation of the Poisson brackets
(PB). Therefore, differential algebra libraries are needed to
carry out fast computations with polynomials and vector
functions of polynomials.

The map may be created on a symbolic computational
system such as Mathematica [1], [2], [3]. Usually, as it
was the case with the LieMath code reported in [3], one re-
lies on the symbolic engine to perform operations on multi-
variate polynomials, such as product, derivative, truncation
etc. We have recently implemented in LieMath some Trun-
cated Power Series Algebra (TPSA) techniques allowing
us to speed up the above operations and also to produce
parameter dependent Taylor maps – maps with knobs [7].
The main question addressed here is how to implement the
pyramid structure of polynomial coefficients and efficiently
handle the index set manipulation. We use direct address-
ing with a linear index array and preprocessing [5], [6].

In general, the implementation of TPSA improved the
notebook runtime by around a factor of ten – see the last
Section.

TPSA IN LIEMATH

This section describes the algorithm allowing one to re-
place the polynomial operations in BCH with operations on
coefficient arrays (derivative structures).

Pyramids of Coefficients

The expansion of a real-valued function of n variables
x = {x1, x2, . . . , xn}, truncated at order m, is:

f(x) =
∑

|k| ≤m

Fk xk1
1 . . . xkn

n =
∑

|k| ≤m

Fk xk (1)

|k| ≡ k1 + k2 + · · ·+ kn ,

where the multi-index k = {k1, k2, . . . kn} is a vector of
nonnegative integers indicating the term in the series and
Fk is an array of series coefficients. Fk is also the array of
partial derivatives of f (with factors kl! thrown in). It can
be visualized is an n-dimensional pyramid where n spec-
ifies the dimension – linear, triangular, and pyramidal ar-
rays, and m the size. Below we will call Fk the derivative
structure (DS), or simply the pyramid of f .

One can join all index vectors k into one array (index
set) Γm

n . The index set can be built as follows:

Γm
n ≡ {k1, k2, . . . ,kL} = Join

(p = 0, 1, · · ·)
C[p, n] (2)

where the total number of entries L is the binomial coeffi-
cient

(
m + n

m

)
and C[p,n]) are the Compositions of p of

order n, i.e. all different arrangements of n nonnegative in-
tegers whose sum is p. A function generating C is available
in Mathematica.

Poisson bracket as a pyramid operation

Let f, h, u, v be the polynomials produced by the trun-
cated series expansions of the Hamiltonian and F, H, U, V
the associated pyramids. The basic idea is: if h is given as
an arithmetic operation combining u and v and the pyra-
mids U and V are known, then one needs to define a cor-
responding pyramid operation on U and V that yields H.
To encode the Poisson bracket only power and derivative
are of interest since addition and multiplication by a num-
ber are performed coordinatewise, as in matrix addition and
multiplication by a constant.

Indexing and Speed

Although in Mathematica it is not a syntactic problem
to index directly one array with another, even when their
dimensions are arbitrary, we choose to work with a linear
index, which means simply dumping all Fk into a linear
array F (l), l = 1, . . . L. The method of addressing and the
order in which the entries F (l) are stored in the computer
memory have been chosen in three alternative ways:

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH067

05 Beam Dynamics and Electromagnetic Fields
D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

2077

A) the order of F (l) is as in (1), i.e. determined by the
Compositions operator. A reference array lists all the in-
dices needed for the DS Poisson bracket (PBDS). For each
argument U, V subsets of Γ are created and stored together
with information on what to do with the subset. A sub-
set corresponds to a group of pyramid entries called a box.
When the PBDS is actually called, only the box elements
are operated upon.

This method saves time at the expense of space and only
requires one to encode a few manipulations on lists of in-
tegers. However, this is may not be the optimum solution
for operations on sparse arrays, which occur since in some
expressions only a few of the variables are present.

B) F (l) is reordered in the same way as the differential
algebra vector in [5], i.e. according to decimals in base
m + 1. This brings the advantage that for the product the
resultant coefficients can be automatically stored into the
correct location, thus avoiding multiple operations on ze-
ros. A reference array is still used. The derivative is com-
puted as in A.

C) F (l) is reordered according to the nested index
SCALARNEST in [6].

With the method A, the time needed to concatenate two
elements with a BCHDS that contains terms to O(6) (see
below) is a constant: 0.22 sec on a 1 GHz processor for n=6
and map order M=3. With method B, as well as with the
analytical BCH, this time varies depending on the optical
element. In general, replacing A with B did not bring any
substantial improvement in speed which can be explained
with the built-in ability of Mathematica to operate on sparse
structures. Work in this direction continues.

LIEMATH

The map transforms a vector of canonical coordinates
x = (x, px, y, py, cτ, pτ). The dimension of phase space n
may be larger than 6, if a nonlinear optimization is required
(last Section).

The input conforms closely to the standard format,
which is made possible by a Mad parser written in the same
language. MadX and Dimad beamline descriptions work,
if a flow-control command liemath is added immediately
after use.

The algorithm is as outlined in [3], [8], [10]. How-
ever, the BCH formula is replaced by its pyramid equiv-
alent BCHDS. At first, Γm

n is created and the generators
−LpHp(x) are series-expanded to order m = M + 1
and converted into pyramids Fk. Above Lp and Hp are
the length and the Hamiltonian of the p-th optical element.
For a particle with energy E, assumed to be constant, the
Hamiltonian is:

H = −(1+hx)
[
1− 2pτ

β0
+ p2

τ − p2
x − p2

y

]1/2

−pτ

β0
−eAs

p0
.

(3)
The momenta have been scaled by the design momentum
p0. Also pτ = −(E − E0)/p0c and cτ = c(t − t0) is the

time of flight relative to the reference particle. In the field
expansion term As = �A .�s (1+hx), where �A is the vector
potential and �s the unit vector in direction tangent to the
reference trajectory. We use eAs/p0 up to and including
octupole terms, see e.g. [9].

The kick factorization of an element is made by replac-
ing it with a Lie operator and a following linear matrix. All
matrices are moved to the end of the lattice, which changes
each Lie operator with a similarity transform. For purely
numerical maps, using the DS operators in the last step
does not give much advantage because of the sparsity of
the polynomials involved.

Next, all nonlinear generators are combined into one
with BCHDS:

BCHDS(F, G) = F + G +
1
2

:F : G +
1
12

:F :2 G+

+
1
12

:G :2 F + · · ·+ 1
120

:G :2:F :2 G + O((F, G)6);

:A :B ≡ PBDS[A, B]), (4)

where F and G are the pyramids of two polynomials whose
linear terms are removed and O((f, g)6) means terms of
order≥ 6. Applying on this generator the formal expansion
of the Lie exponent (in DS form) yields the Taylor map.
For periodic lattices, this one-turn map is converted to its
normal form by using symbolic transformations as in [4].

RESULTS

Computing time

For purely numerical maps, the notebook runtime is
around one minute per 100 elements. This time is reduced
∼ 3 times for a BCH of order O((f, g)4).

Using BCHDS in the concatenation loop (4), instead
of the symbolic BCH, improves speed since in intermedi-
ate calculations the symbolic system attempts to store all
terms, so truncation of the orders ≥ m becomes absolutely
necessary, while with TPSA the polynomials are in a sense
always automatically truncated in the desired order.

To confirm the above statement we have compared the
time of BCHDS and the untruncated BCH. Only some frac-
tion, picked up randomly, of the f and g pyramids is pop-
ulated with nonzero real numbers. The improvement in
speed due to TPSA reaches a factor of 103 for large-size
(n > 4, m > 3) and dense (most entries nonzero) pyra-
mids. The maximum improvement is observed when all
coefficients are symbols.

In another test (Table 1) we have timed the BCH loop for
a beamline of 70 elements. The result from the symbolic
BCH is truncated at order m after each element.

M BCHDS symbolic BCH
3 15 125
4 52 846

Table 1: BCH loop time in sec (lattice as in [1])

WEPCH067 Proceedings of EPAC 2006, Edinburgh, Scotland

2078 05 Beam Dynamics and Electromagnetic Fields
D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

Figure 1: LieMath output showing the (linear) dependence of the elements T126, T346, U1266 and U3466 on the strengths
of the two sextupole families S1 and S2. See the discussion in [1] and [11].

Figure 2: Strong interleaved sextupoles – lattice as
in [1]. The particle is a 50 GeV electron with
x0 = 3 σ (σ = 1.5 10−6 m). The Dimad result (sine-
and cosine-like trajectories) is also shown.

Numerical nonlinear optimization

One natural extension of the algorithm allows us to get
numerical maps depending on nonlinear parameters (maps
with knobs [7]). Consider a beamline for which Q pa-
rameters nl1, nl2, . . . ,nlQ have been declared to be vari-
ables. To create dependence on these parameters, the
above names are appended to the coordinate vector: x =
{x, px, y, py, cτ, pτ , nl1, nl2, . . .nlQ} and the value of m is
increased. No other changes in the algorithm are needed.
For instance, increasing the map order from two to three
produces linear dependence on sextupole strengths, mak-
ing it possible to match chromaticities and second order
map elements. An example based on the lattice in [1] is
shown on Figure 1.

Agreement with numerical integration of EOM

Fig. 2 and 3 present results of single-pass tracking
through the Mathematica Taylor map of order M for two
lattices: one with strong interleaved sextupoles (SLC fi-
nal focus [1]), and another – an FFAG cell with a very
large momentum offset required [3]. For each optical el-
ement, we have solved numerically the equations of mo-
tion derived from (3) with unexpanded square root. For
test purpose, no approximations are made in the Hamilto-
nian. The plots show, for a particle that starts with x =
{x0, 0, 0, 0, 0, pτ,0}, i.e. δ = (1− 2pτ,0/β0 + p2

τ,0)
1/2− 1,

the relative deviation of final xLIE from the numerical re-
sult xNUM, assumed to be exact.

Figure 3: A large momentum offset and lattice as in [3].
The particle is a muon (γ = 190) and x0 = 1 cm. The
result from 7th-order tracking with Cosy is also shown.

In both cases the agreement is limited for large M , which
is explained with the omitted higher orders in the BCH ex-
pansion (4).

REFERENCES

[1] N. J. Walker, J. Irwin, M. Woodley, “Analysis of Higher
Order Optical Aberrations in the SLC Final Focus”, us-
ing Lie Algebra Techniques, Proc. of PAC 1993. The lat-
tice we have used can be found as Demo 7 in Dimad:
ftp://csftp.triumf.ca/pub/CompServ/dimad

[2] J. Irwin, Analytic Nonlinear Methods for Beam Optics, in
Proc. PAC 1997.

[3] D. Kaltchev, Building Truncated Taylor Maps with Mathe-
matica and Applications to FFAG, in Proc. EPAC 2004.

[4] Chunxi Wang and Alex Chao, “Analytic Second- and Third-
Order Achromat Designs”, Proc. of PAC 1995.

[5] Berz M., “ Differential algebraic description of beam dy-
namics to very high orders”, Particle Accelerators 24, 109
(1989), pp 109-124.

[6] R. Neidinger, “Computing Multivariable Taylor Series to
Arbitrary Order”, Proc. of Intern. Conf. on Applied pro-
gramming languages, San Antonio (1995) pp. 134-144

[7] M. Berz and K. Makino, COSY Infinity Version 8.1.

[8] Tanaji Sen, Y.T. Yan, J. Irwin, Liemap : A Program for Ex-
tracting a One-turn Single Exponent Lie Generator map

[9] Johan Bengtsson, Doctorate Thesis CERN 88-05.

[10]A. Dragt and E. Forest, J. Math. Phys. 24 (12), 1983.

[11]J. Murray, K. Brown, T. Fieguth , SLAC-PUB-4219 (1987).

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH067

05 Beam Dynamics and Electromagnetic Fields
D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

2079

