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Abstract

The High Energy Storage Ring (HESR) is a part of the
international project FAIR for the antiproton physics with
beam in a momentum range from 1.5 to 15 GeV/c to
explore the research areas of hadron structure and quark-
gluon dynamics [1]. An important feature of the project is
the combination of phase space cooled beams with
internal targets. Therefore there are two obvious reasons
of beam heating: the target-beam interaction and the intra-
beam scattering.

Another source of the beam size growth is the high
order non-linear resonances. In the paper we investigate
the non-linear beam dynamics together with the different
schemes minimizing this affect.

HESR LATTICE

The HESR lattice consists of two arcs and two straight
sections for target and cooling facilities with
circumference 574 m [2]. Figure 1 shows the common
view of HESR and one half super-period.
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Figurel: Schematic layout of the HESR lattice and one
half super-period.

HIGH ORDER NON-LINEARITY ORIGIN

Multipoles

The optics of HESR consists of the quadrupoles, the
bend magnets, the sextupoles and the multipoles
correctors. Besides, due to the imperfections the
multipoles errors are added into the lattice. Even in ideal
optics and for the monochromatic beam each n-th

multipole M, in composition with the curvature A"
creates all higher multipoles M, .

Following the MAD presentation, Hamiltonian of
system is:
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In case of non-monochromatic beam d=Ap/p #0 each
multi-pole of n-th order M, gives all multi-poles M,

of 1+(n-1)-th order in the place where D#0.

In case of the closed orbit distortion x,, and y. any

multi-pole M, of the n-th order is:

xiyn =x"y" + Zaijx"_’ym"Ax’Ay’ .

i,j=l,m,n

Thus, due to the closed orbit distortion each n-th multi-
pole M, gives additionally all multipoles M, .

Chromatic sextupoles

Usually the strongest contribution into the non-linearity
is coming from the chromatic sextupoles. In order to
investigate the non-linear optics the Hamiltonian (1) is
presented as:

H(Ix,ﬁx,ly,zﬂy):vxlx +vy1y

1 ik jl2 ki2 . (2)
+ DEp-1)7 -1 expi(ld, +md,),

Jjok,l,m

Im

where the coefficients E/f = Zh m €Xpip@ depend on
P

the value and the distribution of the non-linear elements.
They have the periodicity 27z with the new “time”

coordinate @=s-27/C. So, the non-linear part of
Hamiltonian is:
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with the Fourier coefficients /,, = gy IE K expip@ . In
0

case, when two conditions, the non-zero harmonic value
h ., # 0 for some of the non-linear elements M and

the equality kv +k,v, = p, where k =/ and k, =m,

ko

are fulfilled, we have the non-linear resonance. And on

the contrary, when we wish to exclude the resonance

influence, we should minimize the harmonic amplitude.
The only condition, which one cancels all coefficients

E*

in » 18 the zero value of h,, =0 for all j, k [, m. In
particular, in case of the chromaticity correction on arcs
with N super-periods the sextupoles have to be placed

with the phase advances 4,4, per one super-period,

when the harmonic 4, =0 for all above mentioned

Jklm
combinations of j, /, k, m, and the total multipole of third
order is canceled:

N
My =3 S, BB expin(ip, +mp) =0 3)
n=0

In the HESR two families of sextupoles are used for the
chromaticity correction: two focusing and two defocusing
sextupoles. If super period number N is even and arc

tunes v, are odd, then the phase advance between
similar sextupoles of n—th and (n+N/2)—th super

V., N V.,
=Y . ==Y Tt means we have an exact

periods equals

condition for compensating each sextuplet’s non-linear
action by another one [2].

THE NON-LINEAR TUNE SHIFT DUE TO
MULTIPOLES

Nekhoroshev's condition

At derivation of the Hamiltonian (2) we use the first
order perturbation theory, when the value #,,, is taken as
the small parameter. Already in the first order of the
resonance theory (P=1) the sextupole excites four
{m}=11,0,3,0,1,22}. The
resonances and their order grows with the order as 2P +1.
The  resonance arises under the  condition
prky, +kyv, =A-(k}+k})"?, where A is the

resonances number of

detuning from resonance, and k, =/, k, =m.

In the action-angle variables the average Hamiltonian
of the motion can be written as:
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where <hkﬂk“,p> = Iﬂf /zﬂf‘/zsx’xy (s)expi(kxﬂx +k,u, )ds
0

and the coefficients ¢,¢,{,, determine the non-linear

tune shift. In the first order of the perturbation theory the
non-linear tune shifts arise due to the octupoles. But
already in the second order the sextupoles give
contribution in the non-linear tune shift as well. The
influence of the non-linearity is specified by the
discriminant in the expression:

A 3h cos3z§‘x 1 9
Ii/z :—wTi?\/thp_S;x(A—i—;xy[y) (6)

The lattices with ' >> &, have to be classified as a
special lattice, since it is a case, when the value of 4y, is

effectively suppressed, but the non-linearity remain to be
under control and strong. It is obvious from (6), if the sign
of the detuning A coincides with the sign of the tune shift
¢ ., the discriminant is negative and the system has only

one centre at /, =0 . Therefore this case corresponds to

the maximum stable region and the lattice with these
features is the most hopeful. However, we can see from
the discriminant D , if ¢, has the opposite sign with the

tune A, then under some amplitude of oscillation in the
vertical plane /, the total detuning A, =A+ ¢ I can

total xyty
make the discriminant D=>0. Following the
Nekhoroshev’s quasi-isochronous condition [3] the

maximum stable region is when all ¢ ,¢,,¢, have the

same sign.

Correction of non-linear tune shift

Thus, as the first step, the chromatic sextupole have
been compensated in the frame of the first order
perturbation theory. And after the only reason of the
structural resonance excitation is the working point
smearing due to the non-linear tune shift.

As the second step, using the multipole correctors, we
can compensate or at least minimize the total non-linear
tune shift. For this purpose we investigated the individual
non-linear tune shift of each type of multipoles. The
calculated total tune can be represented as the function of

the emittance through the radius r, =/ B¢, :
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The non-linear tune shift is determined by the first

X

coefficient , which depends on the required

X

£,=0

corrected chromaticity A, (see Fig. 2). In both planes it
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can be approximated by the parabolic dependence
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Figure 2: The horizontal and vertical non-linear tune shift

2
cor

versus the required corrected chromaticity A

Besides, the errors in the bend magnets affect on the
non-linear tune as well. Figure 3 shows the non-linear
tune shift versus the sextupole and octupole component
errors in the bend magnet measured in the units

10* x Ab /B, and 10* x Ab /B,

sext _mag oct _mag

correspondingly.
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Figure 3: The non-linear tune shift vs the sextupole
Ab / B, and octupole Ab

sext _mag

/ B, components in

oct _mag

bend magnet.

From the numerical simulation we found out that the
horizontal tune shift is more sensitive to the errors in the
bend magnet.

In order to compensate the non-linear tune shifts we use
the multipole correctors located near each quadrupoles
(see fig. 1 and 4).
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Figure 4: The non-linear tune shift versus the octupole
b and vertical

oct

components in multipole horizontal
b} corrector.
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The Table 1 shows the coefficients between the
horizontal, vertical tune shifts and the corresponding
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parameters. Due to the different value of coefficients for
the correctors they are decoupled each from other and
allows compensating the tune shifts in both planes.

Table 1: Coefficients.

A;ﬁur Absextimag : M b(]}:tor ’ b(‘))LC;” >
B By mT mT
0 x10*
x10®

v, 0.08 0.1 11.2 11.2 0.6
aé‘x £.=0
v, 0.09 0.04 4.0 0.13 5.2
de, .

THE SPACE CHARGE TUNE SHIFT

Due to the space charge two effects are observed: the
mismatching and the structural resonances crossing. In
our case, since the mismatching is determined by ratio
(Vx,y—AVx’y)/ Ve, it has not significant effect. It is
another situation with a structural resonance. By
SIMBAD for each energy 1, 4 and 6 GeV we investigated
the behavior of beam crossed the structural resonance.
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Figure 5: The structural resonance crossing.

Figure 5 shows the resonance crossing for the different
energy value. The curve indicates how due to the
resonance crossing in the vertical plane with initial tune
v, =12.13 the particles in bunch are redistributed. Thus,

at W=1 GeV the minimum achieved emittance is about
0.1 mm mrad.
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