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ADIABATIC THEORY OF SLOW EXTRACTION OF PARTICLES FROM
A SYNCHROTRON

S.A. Nikitin, BINP SB RAS, Novosibirsk, Russia

Abstract

The analytical approach is developed to describe the pro-
cess of the slow extraction of particles from a synchrotron
based on an adiabatic crossing the betatron resonance of
the third order.

INTRODUCTION

This work was made in full in the middle of 1990s, dur-
ing the author’s participation in the investigation of the pos-
sibility of obtaining and accelerating a polarized deuteron
beam at the Nuclotron facility (JINR, Dubna)[1]. Now, in
connection with the extensive interest in creation of heavy
ion synchrotrons, author hopes that the approach developed
can be useful at comparative analysis of different methods
of particle beam extraction.

COMMON DEFINITIONS

In the well-known method of slow particle extraction
from a synchrotron the amplitude of radial betatron oscilla-
tions grows near the nonlinear resonance v, = k/3+4 [2].
Here v, is the radial betatron tune; § << 1 is the detuning;
k is the resonance harmonic number for sextupole perturba-
tions h(6) = (9% B, /0=*) normalized by the average guide
field). The function of azimuth «(#), which presents radial
oscillations of a particle with a zero momentum deviation
(dp = 0), is found by the method of averaging and has the
Floquet form: = = a, f,e**=? + c.c., where the amplitude
a; = |a.|e*= is changing "slowly” by the following law:

po (o).

The angle brackets signify averaging over the synchrotron
storage ring and tilde denotes complex conjugation. In the
variables
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such motion corresponds to the perturbation Hamiltonian
21, 3/2
H=-I,0- (T) |P| sin 3w. (1)
Under conditions of slow extraction, Hamiltonian (1) de-

pends on the azimuth explicitly since the detuning varies,
9

generally, by the law § = 6; — [ 6'dd, &' = dé/dé.
0
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THE PHASE INTEGRAL METHOD

The perturbation theory
Applying the Hamiltonian (1), we find the phase integral

J:j{Idw

for the case of the slow changing detuning § = 3v, — k:

dH

_ /
= |16"] << |HJ|.

At a distance from the resonance, I/ = —H /4§ and thus this
condition takes the following form:

|6'] << 4°. (2)

If (2) is true, J can be considered an adiabatic invariant
(J = const). One can determine the behavior in time of
the radial oscillation amplitude |a,.| = +/21 through its de-
pendence on §(#) during slow extraction of particles. First
of all, we applied the perturbation theory method to esti-
mate this dependence. At a distance from the resonance,
at the initial amplitude of oscillations I = I; and detuning
|6;] >> \/21;|P|, a zero approximation is valid (P — 0):

IO =< T >= —H/§=1;, wy=dwy/df =—4,

wy = —08 —argP/3, JO =92r<I>.

< I(6) > denotes the so-called “action”, the value <
aZ/2 > averaged over beatings of the closed phase tra-
jectory H = const in the plane I, w. The "action” begins
to depend on a time through the detuning only in a second
approximation. In this case,

10 x?
(2) — _PA .
JW =< I> (1= 52)_27@,
where
2/21;
X=7 P

3 9
is the perturbation parameter (the relative width of the res-

onance); 5 = d/4;, &; is the initial value of detuning. The
action” varies as

10 y?

I >~ {14+ —5). 2.2
<I>xl(l+ 5 %) (2.2)
This expression describes how the beatings-averaged
squared amplitude of x-oscillations grows with decrease of

d outside the resonance band ¢ ~ /2| P]|.
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The exact calculation of phase integral

Taking the type of symmetry of the trajectories H =
const into account, we can write

b
Tw’
J=6 / 7 dl,
where b and ¢ are, correspondingly, the maximum and
minimum of 7 at periodic motion. Within the interval
0 < w < 27 the closed trajectory undergoes 3 full os-
cillations in accordance with the condition of extremum
dI  (20)32|P|cos3w
dw — —§ —2I|P|sin3w
or cos 3w = 0. Expressing the dependence of the integrand
onw via I and H, we obtain

(3H + 13)
(H + 15)?

. (4)

8|7’|2

2f|7>|/\/[3

The radicand in the integrand has a cubic polynomial form
and can be presented as

9
8|P|2 _I)(b_j)(c_j)a

where @ > b > c are the real roots of the polynomial.
The root a corresponds to the minimum of the non-closed
trajectories. Using the last representation, one can bring
the integral (4) to the tabular form and obtain

- (H +10)* = (a

_ 34D e
J—x{m k)~ E()} )

where K and £ are the complete elliptic integrals of the

first and second kind; & = +/(b—c)/(a—¢); H =

H/(I;6;) and I = I/I;. Adding to (5) the condition
J = 2z I; and the equation of extremums

2 2

poSp i

X

N
we obtain the system for determination of the roots a, b, ¢
and the Hamiltonian A depending on the detuning 4. Nor-
malized evolution of resonance detuning looks like § =
1—26, where 6 = 6/ (woT.,), T, is the time interval when
detuning changes by the value 24; with the rate 6’ = const.
Figure 1 shows an example of behavior of the solutions
b(#) and ¢(0) at x = 0.04. For comparison, the values
Imaz/1i = 1—|-X/6 and Ip;n /I = 1— /6 derived by the
perturbation theory method have also been plotted.

Near the extremum I, = I,,4, = b (at sin3w, =
—1), the amplitude I increases rapidly while the phase w
changes relatively slowly. The condition for such regime
of motion to arise can be expressed as

X/S:—H@m 0.5. (6)

For the plotin Fig.1, in particular, that takes place near the
resonance band, whose halfwidth is ¢ = 0.08.
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Figure 1: Variation of the maximal and minimal amplitudes
of phase trajectory.

TIMING AND MOMENTUM SPREAD

From (6) we find that the interval of adiabatic motion of
O (starting when excitation is ”switched on” and resonance
detuning begins decreasing (¢ = 0) and ending when the
amplitude begins rapid growth (¢ = ©)) meets the equation

®
N=14= 6i {52» - /[5' — & (up —|—u’)]d€)} NG

0

Here §; = dp + £, (uo + u)|a=o is the initial detuning (§, is
the average value in the circulating beam); pouo = Apg is
the gain of mean momentum relative to the equilibriumone
for the case when the RF field stays ”put on” at a constant
level of the guide field while the frequency v, is retuned
in the time 7o, (up = dug/df); u = w;sin (v,0 + ¢;) is
synchrotron oscillations with the frequency v, phase ¢ and
amplitude u; = dp; /po (v' = du/db); & = Ov, /Juisthe
chromaticity coefficient; ' = Av,/(woT.;) is the rate of
detuning change in the range Av, = 24, in the time 7.
For simplicity and generality, we do not consider the influ-
ence on (7) of the special orbital bump usually created at
the place of extaction. To include this influence, one must
add the bump amplitude to the growing betatron amplitude.

The case of zero momentum spread

Methodically, it would be useful to find the function fe
of density of distribution of the interval © as well as its
first two moments - the average < © > and the variance <
©? > - at first, in the monochromatic beam approximation
(6p = 0). Using (7) let express © in relative units for the

case of py linearity (Apy = Apg/woTey)
~ ] 1 4 |P|
= e 1_ — gy — ,
O= T T ( 3¢ 50) ®)
__ & Ap
260 po
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From (8) it follows, in particular, that at Apy — 2p08, /¢
at &€ > 0 the real particle extraction is "drawn out” as
compared with the situation of Apg = 0. In a "smooth”
approximation of betatron motion (8, = R/v.,a, =

0, %02, = o2) the distribution function has been obtained
(f fed® =1)
_ 97md3q 9md2

~7P0T _ A R ' _ A 2
f®_|73|2€x|1 QGQIexp{ 4|7)|25x(1 2(9Q)}

with the second moment

(4—m) [PP?

§0% >= .
007> 36m  62¢2

Current of particles extracted from the accelerator is deter-
mined by the function fo = fo[©(¢)] and depends on the
time (¢ > 0) as

S eN

d
J(t) = €Nf®|g| = T—f(a,

e is the elementary charge, N is the number of deuterons
accelerated. In particular, in a "smooth” approximation

(6p = 0)
9ma3 (1 — 2124)2
PN T 4ppe,

The extracted beam gets the spread in momentums

2tq

Tex

eN 97d3
)= 2100
IO =71 ppe,

< dp? >M?= Apy < 07 >1/2,

though the circulating beam was monochromatic in the ap-
proximation considered.

Consideration of momentum spread

For the case, when the beam is extracted with the RF
field shut down, we have derived the following equation
for the current of extacted particles:

~ eN [2  plA] T _pax?
- - . nta
J(©) 2o Vmop(p+a) i+ PR %

ax H+a—+ax
erfc | ———— erffc | —————) — 2
e () + o ()

_|_e—aae2 _ e—a(ae+1)2—u.

We have used the following designations:

_ 2(](50

AZ 2
A= , a= Po
o

o 8q2012,’

971'(58 ~
= = 2¢0 — 1.
H 4|P2(€x’ x q

In this case, spread of momentums in the extracted beam is
defined completely by that in the circulating one.

05 Beam Dynamics and Electromagnetic Fields

WEPCHO086

Synchrotron oscillations

Generally (¢, # 0), the betatron frequency v, is mod-
ulated by the law v, =< v, > +&;(dp/p) sin (v8 + ¢).
At a small frequency v, << 6{ xd;) ~ |7?|8x1/2, the near-
est modulation resonances are fully inside the band of the
principal resonance and are, thus, negligible. So, for slow
extraction with RF voltage switched on, consideration of
momentum spread is limited to taking the corresponding
initial spread of detuning from resonance &,dp/po into ac-
count. Since v, is small, the modified condition of adia-
baticity is fulfilled:

16" + [Exvsop] << 4<X5i>2~

At o, # 0 particles "escape” when (A, = const,d’ =
const)

N o’ Apo o

2x ~ 1 6i®+€x o 3
where &; = do — & |0p/po| (@t &g > 0 and &, > 0). We
assume the synchrotron frequency to be significantly larger
than the inverse time of passing the resonance band. In
this case, the timing of extracted beam current has been

obtained in the form:

- 2 eNplA
7(0) = |2 _<NulAl

{ T aae~e_’7—tafa X
T Twop (it a) |\ it a

[erfc(— a5 )—erfc( HE )]4-6‘“*2—6‘“*2}
Vitta Vitta '

The extracted beam momentum spread found is

2
2L T—2 , Apo
<(5p* > Tap (1—T) s
where A = 2¢dy/&,. A small acceleration (Apy — A)
at a non-zero chromaticity (¢, > 0) is advantageous for
minimization of momentum spread of the extracted beam.

CONCLUSION

We have accurately defined the "interval of an adiabatic
motion” from the start of decreasing the resonant tune to
the beginning of fast increase of the oscillation amplitude.
The interval” distribution function has been constructed
to find a beam current timing and a momentum spread of
extracted particles. The latter has been shown to be mini-
mized due to small aceleration of the beam as a whole.
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