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Abstract 
In the framework of the AIRIX program, the electron 

beam propagation between the injector and the X-
conversion target is routinely simulated with the 2D 
TRAJENV code [1]. We describe the main physical 
models implemented in the code for a stationary beam. 
 Both modeling of applied electromagnetic forces in 
induction cells and self generated ones are presented.  

LINEAR DYNAMICS  
The presented expressions allow us to calculate the 

forces effect on the beam in an induction cell taking into 
account the acceleration gap and the solenoid. Typically, 
for a stationary beam, the equations of the beam dynamics 
can be reduced to linear differential equations of the 
second order with constant coefficients. The method, 
already used for magnetic fields [2] is applied here for 
electric ones due to the gap, and for electromagnetic 
fields, due to the space charge effects. 

Dynamics Due to the Electric Field of a Gap 
The radial equation of the relativistic dynamics due to 

the electric field in the gap is used in the simulation of the 
induction cells. We use the following approximations: 
 (i)  paraxial approximation 
(ii) beam of infinite length 
(iii) cylinder symmetry of the applied electric field  
(iv) neglected bound effect due to the transport tube 
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The fundamental equation of the dynamics gives [3]: 
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On the 1st order, at the z longitudinal coordinate, the Er 
component of the electric field is linear with r: 
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So, the expr*ession (1.3) can be written as: 
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We deduce the transversal dynamics equations in 
cartesian coordinates: 
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In a small interval Iz = [z0; z=z0+Δz], the linear differential 
system of equations (1.9-10), with constant coefficients, 
can be written as: 
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The expression of the λ  coefficient is: 

)(Log
z2

1
)0()0( βγ

γβ
Δ

=λ .  (1.14) 

To calculate the electric field in (1.5), we take the 
analytical expression of the electric potential on the 
longitudinal revolution axis of an accelerating cell. This 
potential is modeled by two adjacent coaxial cylinders, 
with a separated gap of length g at the V1 and V2 
potentials [4, 5]. Deriving the potential, we deduce the 
electric field on the z axis: 
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Finally, the energy growth of a particle on path length Δz, 
can be integrated with the (1.5) relation: 
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The energy varies along the longitudinal position z of the 
beam according to the shape of the longitudinal applied 
electric field (1.15). At a z coordinate, we assume that the 
energy due to the gap applied electric field is a uniform 
function given by relation (1.16).  
 

Dynamics Taking into Account the Space Charge 
We note Axy corresponds to A(X,Y), where X et Y are 

the rms sizes in the transverse directions (x) and (y). The 
space charge has a defocusing effect with a s

xxg force in 
the (x) direction. With Kapchinskij and Vladimirskij [6] 
(K-V), we write that such a particle is submitted to the 
following dynamics equations: 
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In these expressions, K is the perveance. 
At the first order around the z axis, in the interval Iz, the 
differential equation (2.1) with variable coefficients is 
equivalent to the following equation with constant 
coefficient: 

0xg''x s
xy =− ,   (2.6) 

where s
xyg is the mean value of s

xyg on the Δz path. As we 
do not know the xm and ym variation in [z0 ;z], to calculate 

s
xyg as a function of unknown X(0) and Y(0) at z0, we make 

a limited development of s
xyg around z0. The mean value 

of the first order limited development of function g is 
given by: 

)0()0( 'g
2
zgg Δ+= .   (2.7) 

We state 

xy

s
xy f

Kgg == ,    (2.8) 

where 
)YX(Xf xy += .   (2.9) 

The perveance can be written as: 
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where Io is the characteristic courant of the beam: 
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With the (2.10) relation and the Lorenz 
relation 1)1( 22 =β−γ , we obtain: 
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with 
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Finally, we obtain the mean value of the first order 
defocusing due to the space charge: 
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Global Equation of the Dynamics 
Taking into account the gap acceleration, the space 

charge and the solenoid, and assuming that the canonical 
angular momentum is null (constant kinetics momentum), 
equations (1.10) and (1.11) can be written as: 

0xg'xg''x xy21 =++ ,  (3.1) 

0yg'yg''y yx21 =++ ,  (3.2) 
with 
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In this relation, 2g and s
xyg  reflect respectively the gap 

field effect contributions (relation 1.12) and the space 
charge (relation 2.20). The 2

z0k term corresponds to a 
focusing force due to the magnetic solenoid field: 
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where )z,0(Bz is the axis solenoid force. 
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BEAM TRANSPORT MATRICES  
Solving the differential equations (3.1) and (3.2), we 

obtain the transport matrix: 
XRRF UUUUU ×=×= .   (4.1) 

In this expression, UF is the focusing or defocusing matrix 
and UR is the rotating one: 
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For the rotating matrix, Δθ is the angular variation due to 
the solenoid for the longitudinal step Δz: 
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For a focusing force (
2

xy2g λ> ), we have: 
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For a defocusing force (

2
xy2g λ≤ ) we have: 
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A particle vector X in the phase space and the 
momentum beam matrix σ vary according to [6]: 

X(1) ×= U X(0),   (4.8) 
σ(1) ×= U σ(0) tU× .  (4.9) 

 
The figure 1 shows an example of electron transport in 
AIRIX using the TRAJENV code. The upper curve is the 
K-V electron beam envelope radius, and the lower ones 
show the centroid trajectory.  

CONCLUSION 
We described the matrix model integrated in the beam 

transport code TRAJENV which is routinely used on 
AIRIX. Currently, it can also simulate successfully the 
transport of the electron beam through thin foils [7, 8]. 
Now, new improvements are under development for the 
end-user of the radiographic facility. 
 

 
Figure 1: Electron beam envelope radius and centroid 
trajectory in AIRIX with the TRAJENV code. 
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