
TIME DOMAIN RADIATION OF A GAUSSIAN CHARGE SHEET
PASSING A SLIT IN A CONDUCTING SCREEN

M. Filtz∗, H.Henke†

Technische Universität Berlin

Abstract

A semi-analytical method is proposed to calculate in
time-domain the radiation of a relativistic Gaussian charge
sheet travelling parallel to a slotted conducting screen. The
method is based on transient line current elements as basis
functions which have a triangular time dependence. Mak-
ing use of duality magnetic current elements are used in the
slot region. The dual problem, the scattering of the fields at
a conducting strip is also treated. The main purpose of the
paper is to present an effective algorithm which is easy to
implement for computing and visualising plane scattering
and diffraction problems in time-domain.

INTRODUCTION

Two-dimensional scattering and diffraction problems
like for example the diffraction of electromagnetic waves
by a slit, are normally treated in the frequency domain.
This leads to a system of linear equations for the coeffi-
cients of the expansion functions which has to be solved for
every frequency, an inadequate approach for high frequen-
cies. In case of transient processes a Fourier transform is
required in addition.

The aim of the present paper is the development of ef-
ficient basis functions which allow for direct calculation
in time-domain. These are planar electric and magnetic
surface current elements with a triangular time behaviour.
Electric current elements can be used e.g. for the compu-
tation of the scattering at a conducting strip, whereas, due
to the duality principle, magnetic current elements are used
for the diffraction by a slit. The approach is semianalytic
since the basis functions are known analytical functions. A
full analytical solution is only possible for a few special
cases like the diffraction by a conducting wedge [1].

FIELD OF A TRANSIENT ELECTRIC
LINE CURRENT

Given is a line current with a triangular time dependence
parallel to the z-axis, Fig. 1.
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Figure 1: Geometry and time dependence of a line current
i(t) = I0T (t).

Making use of the retarded vector potential one can show
that the electric field is given by
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with f(ξ) = arcosh ξ and a = c0τ/2. This already rep-
resents adequate basis functions in the general sense of the
method of moments as shown by HARRINGTON [2]. They
can be used to compute the scattering of waves at conduct-
ing surfaces. For that purpose the surface is partitioned into
small segments which can be considered as line currents if
the point of observation is not too close to the segment.

SCATTERING OF A PLANAR FIELD
PULSE AT A CONDUCTING STRIP

A Gaussian and planar field pulse with the electric field
of

E(i)
z (ξ, t) = E0 exp

(
[ξ − c0(t− t0)]

2

2(c0T/2)2

)
(2)

propagates under an angle ϑ with respect to the y-axis and
is scattered by a conducting strip of width b, Fig. 2.
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Figure 2: Planar field pulse is incident on a conducting
strip.

The time shift t0 is large enough, typically t0 > 2T , such
that the strip may be considered as current-free for t = 0.
Now, the induced surface currents will be approximated by
spatial pulse functions P (x− xi) of width a and by tem-
poral triangular functions of duration τ = 2a/c0

JF (x, t) =
N∑

i=1

M∑
k=1

Iik

a
P (x− xi)T

(
t− tk +

a

c0

)
, (3)

with tk = ka/c0 and Ii1 ≈ 0. The unknown coefficients
Iik for k > 1 follow from the boundary condition for the
electric field

E(i)
z (x = xi, y = 0, t = tk) + E

(s)
ik + Eik = 0 (4)

taken in the center of the current segment i and at time in-
stants t = tk. Eik is the electric field due to all segments
j �= i at the position of segment i and at the time instant
t = tk. E

(s)
ik is the electric field of segment i at its center

and also at t = tk. Then, the normalized current coeffi-
cients Ĩik = IikZ0/(2πaE0) at t = tk are easily evaluated
by making use of the current coefficients at earlier time in-
stants

V0Ĩik =
E

(i)
z (ξ = xi sin ϑ, t = tk)

E0
− (5)

−
k−1∑
n=1

Ĩi(k−n)Vn −
N∑

j=1
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k−1∑
l=1

Ĩjl α(|i− j|, k − l) .

Here the basis functions α(p, q) are given in (1) and the
constants Vn follow when computing the field in the center
of its proper segment

V0 = arcosh 2 + π
3

V1 = arcosh 4− 2 arcosh 2 + 4 arcsin 1
4 −

2π
3

Vn = arcosh (2n + 2)− 2 arcosh (2n)+
+ arcosh (2n− 2) + (2n + 2) arcsin 1

2n+2−
− 4n arcsin 1

2n + (2n− 2) arcsin 1
2n−2 .

(6)

Fig. 3 shows the lines of constant electric field strength.
The strip was partitioned into 25 segments. In Fig. 4
the surface current distribution is shown on the strip with
100 segments in that case. After 20 time steps the peak
of the field pulse has reached the strip. As can be seen,
the induced current peak propagates faster than the veloc-
ity of light v =

√
2 c0 because of the incidence tilted by

sin ϑ = 1/
√

2.

Figure 3: Lines Ez = const. for a planar field pulse im-
pinging on a conducting strip. Strip approximated by 25
segments.
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Figure 4: Surface current distribution on the strip at dif-
ferent time instants. At k = 20 the peak of the field pulse
has reached the strip. Angle of incidence ϑ = π/4, strip
approximated by 100 segments.
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GAUSSIAN CHARGE SHEET PASSING A
SLIT IN A CONDUCTING SHEET

A Gaussian surface charge

qF (x, t) = qF0 exp

{
−

[
x− v(t− t0)2

]
2(c0T/2)2

}
. (7)

travels parallel to a conducting sheet with a slit, Fig. 5.
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Figure 5: Gaussian surface charge travelling parallel to a
conducting sheet with a slit.

In case of a closed conducting sheet the primary magnetic
field of the charge is

H(p)
z = qF0c0 exp

{
−

[
x− v(t− t0)2

]
2(c0T/2)2

}
. (8)

The effect of the slit can then be described by magnetic
surface currents±JM

F above and below the sheet, Fig. 6.
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Figure 6: Equivalent magnetic surface currents for the con-
ducting sheet with slit.

These magnetic surface currents are easily found in a way
analogous to the approach in the preceding chapter. Since
the diffraction by the slit is the dual problem to the scat-
tering by a strip, one can use the basis functions (1) and
replace Ez/E0 by Z0Hz . After fulfilling the boundary
conditions a result similar to (5) is obtained, where instead
of electric magnetic current segments are used. The exact
procedure can not be outlined here because of the space
restrictions.

In Fig. 7 the electric field lines are shown at time in-
tervals with 20 time steps.1 In addition, the induced wall
current on the sheet is given in Fig. 8. The reflection of the
current pulse at the sheet end can clearly be observed.

1Animated field plots under
http://www-tet.ee.tu-berlin.de/EPAC06/

Figure 7: Electric field lines for a Gaussian charge travel-
ling parallel to a conducting sheet with slit. Slit approxi-
mated by 25 segments, time duration of the basis function
τ = 2a/c0 and mean width of the charge c0T = 10a.
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Figure 8: Wall current in the sheet of the problem in Fig. 7.
At time step k = 20 the charge peak has reached the slit.
Slit approximated by 100 segments.
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