
LARGE SIMULATION OF HIGH ORDER SHORT RANGE WAKEFIELDS

Adriana Bungau, The University of Manchester and Cockcroft Institute, UK and
Roger Barlow, The University of Manchester and Cockcroft Institute, UK

Abstract

We present a formalism for incorporating intra-bunch
wake fields into particle-by-particle tracking codes, such
as MERLIN and BDSIM. Higher order wake fields are in-
corporated in a manner which is computationally efficient.
Standard formulae for geometric, resistive and dielectric
wake fields are included for various apertures, particularly
those relevant for ILC collimators.

INTRODUCTION

There is an extensive literature on wake field effects and
many programs for their calculation. Nevertheless the ILC
collimation system raises new questions about wake fields
which require an extension to the existing simulation tools.
Existing literature concentrates on wake field effects in RF
cavities, which have axial symmetry and in which particles
are on or near the axis of symmetry so that only the low-
est modes are important. Only long range wakefields are
important as the cavities ring at particular frequencies. For
the ILC collimators the short range wakes are the impor-
tant ones. Particle bunches are distorted from their original
Gaussian shape. The bunch passes close to the collimator
so high order modes must be included. The collimator is
not characterized by resonances and the system does not
have axial symmetry. We find formulae for wake field ef-
fects in which higher modes are included, and show how
these can be simulated in a program such as Merlin [1]
which simulate individual wake effects with typically 105

acting particles on each other in an efficient way.

WAKE EFFECTS ON A SINGLE CHARGE

Consider the effect on a trailing particle at r, θ of a slice
of N particles all ahead by the same distance s. We assume
that all particles are relativistic (v ≈ c, γ large) so that
the direct effect of the charges on each other is suppressed
by a power of γ and therefore ignored. So are effects in
a uniform perfectly-conducting aperture: wake effects are
ascribable to finite conductance or non-uniformity and are
thus categorisable as resistive or geometric [2][3]. The ef-
fects of transverse velocity and acceleration during the pas-
sage of the particles through the aperture are ignored: r ′

and r are constant.
The total effect is given by simple summation. If we write
Cm = Σr′mcos(mθ′) and Sm = Σr′msin(mθ′) where the
summation is over all particles in the slice, then the com-
bined kick is

Wz = ΣW ′
m(s)rm[Cmcos(mθ) + Smsin(mθ)] (1)

Wx = ΣmWm(s)rm−1{Cmcos[(m− 1)θ] +
Smsin[(m− 1)θ]} (2)

Wy = ΣmWm(s)rm−1{Smcos[(m− 1)θ]−
Cmsin[(m− 1)θ} (3)

These formulae for x and y, rather than the usual ones for
’transverse’ wake, are correct even when the particles are
spread out in azimuthal angle. The trigonometric terms are
needed to describe a bunch which has not a compact (Gaus-
sian) shape but has internal structure on the same scale as
the beam pipe. The usual monopole and dipole formulae
are reproduced for m = 0, 1. For a particle in slice i, a
wakefield effect is received for all slices j ≥ i. So the total
effect for the x direction (for example) is:

Σjwx = ΣjΣmmWm(sj)rm−1{Cmjcos[(m− 1)θ]
+Smjsin[(m− 1)θ]} (4)

The summations can be re-ordered and the Σ jWm(sj)Smj

and ΣjWm(sj)Cmj terms can be calculated and stored:

Σjwx = Σmmrm−1{cos[(m− 1)θ]ΣjWm(sj)Cmj

+sin[(m− 1)θ]ΣjWm(sj)Smj} (5)

IMPLEMENTATION IN MERLIN

This formalism is well suited to incorporation in a
computer simulation code such as Merlin [1], as although
the effect on a single particle requires summation over
modes, within each mode the effect factors into: Cm and
Sm which depend only on the leading slice, Wm(s) which
depends only on the aperture geometry and r and θ which
depend only on the trailing particle.
At present the code contains two important and separate
classes relevant to Wakefields: WakePotentials and
WakeFieldProcess. Each component may contain a
WakePotentials object. The class WakePotentials is
defined in AcceleratorModel and contains the transverse
and longitudinal wake functions Wlong(z) and Wtrans(z)
and it also has a constructor. It is assigned to a particular
accelerator component by a call to AcceleratorCom-
ponent::SetWakePotentials(WakePotentials*). This is
done by the user who usually invokes the constructor at
the same time, and anything needed for the calculations
(beam pipe radius or conductivity) is provided here in
the argument list for the constructor: this is a point at
which they are accessible. One might define (for example)
IrisWakePotentials:WakePotentials and PipeWakePo-
tentials:WakePotentials with different functional forms
for Wtrans and Wlong.

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH123

05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

2209



Class WakeFieldProcess (defined in BeamDynam-
ics/ParticleTracking) is derived from class ParticleBunch-
Process. To run Merlin with wakefields, the user creates
an instance of WakeFieldProcess and adds it to the list
of processes of the tracker. The tracker is invoked for a
particular beamline and bunch, and through the beamline,
component by component, it tracks the bunch, particle
by particle. This ordering of the loops makes wakefield
implementation possible, as the configuration of all the
particles is known as the bunch passes through each
component. In tracking the bunch through a component,
the program seeks to apply all ParticleBunchProcesses in
its list, including WakeFieldProcess if it has been added. It
invokes InitialiseProcess and splits the bunch into slices.
WakeFieldProcess contains a pointer to a WakePoten-
tials object. As the bunch is tracked through a component
Merlin sets this pointer to the WakePotentials of the com-
ponent in WakeFieldProcess::SetCurrentComponent
(AcceleratorComponent). If the component has no
WakePotentials then various flags are set which ensure
that nothing further happens. Merlin invokes the standard
DoProcess which calls ApplyWakeField. For each slice,
this sums the wake contributions from earlier slices (the
Bunch Wake potentials ) by calling CalculateWakeT, and
CalculateWakeL using the Wlong and Wtrans functions
of the WakePotentials and the charge distribution of
the slice. These are stored in a table so need only be
done once. It then applies the correct kick, particle by
particle. This includes a numerical approximation using
the gradient to allow for the longitudinal position of the
particle within its slice.

The existing standard implementation only includes the
monopole (longitudinal) and dipole (transverse) wakes. To
include the higher order wakes important for collimators
we have to add the ability to sum over modes. As MERLIN
is an object-oriented program, such changes are essentially
achievable by defining new derived classes containing the
extra features desired. This ensures backward compatibil-
ity. We define new classes: SpoilerWakePotentials which
inherits from WakePotentials and SpoilerWakeFieldPro-
cess which inherits from WakeFieldProcess, detailed be-
low. Each class contains a data member int nmodes which
is the order to which the calculation is to be carried out. For
SpoilerWakePotentials this is set when constructed, or by
the user. For SpoilerWakeFieldProcess it is obtained from
the relevant SpoilerWakePotentials as part of SetCur-
rentComponent. SpoilerWakePotentials is pure virtual.
It has pure virtual functions Wtrans(s,m) and Wlong(s,m)
which will be overridden in particular child classes such as
TaperedCollimator and StepCollimator. SpoilerWake-
FieldProcess is complete and does not require any subse-
quent filling in detail. All the flexibility is in SpoilerWake-
Potentials. It contains a new versions of ApplyWakeField
with an extra loop over modes, and of CalculateWakeT
and CalculateWakeL. Calculation of the moments Sm and
Cm for each slice is done through new CalculateSm and

CalculateCm routines..

MERLIN SIMULATIONS

The wake function for a steeply tapered collimator mov-
ing from aperture b to aperture a is given by the following
expression [3]:

Wm(z) = 2
(

1
a2m

− 1
b2m

)
e
−mz

a θ(z) (6)

where θ(z) is a unit step function. This equation was im-
plemented in the MERLIN code as follows:

class TaperedCollimatorPotentials:
public SpoilerWakePotentials

{public:
double a, b;
double* coeff;
TaperedCollimatorPotentials(int m, double
rada, double radb): SpoilerWakePotentials
(m, 0., 0.)
{ a = rada;

b = radb;
coeff = new double [m];

for (int i=0; i<m; i++) {
coeff[i]=2*(1./pow(a,2*i)-1./pow(b,2*i));} }
~TaperedCollimatorPotentials(){delete[]coeff;}
double Wlong (double z, int m) const {
return z>0 ? -(m/a)*coeff[m]/exp(m*z/a):0;};
double Wtrans (double z, int m) const {
return z>0 ? coeff[m]/exp(m*z/a):0;}; };

SLAC beam tests were simulated with the new additions
to the Merlin code. A Gaussian beam having an energy of
1.19 GeV and 2*1010 electrons was sent through a spoiler
having a gap half-width of 1.9 mm. The beam emittance
was set to εx=0.36 mm and εy=0.16 mm. The lattice func-
tions were βx=3m and βy=10m, and the bunch length was
set to σz=0.65 mm. Simulations were performed taking
into account just the first mode for the start. Figure 1 shows
the deflection in angle of the particles that emerge from the
collimator. The y kick varies with the position along the
bunch - the tail is more affected than the head - which will
lead to non-Gaussian bunch shapes. When this effect be-
comes important, a particle by particle tracking code is es-
sential. The wake effect at 0.5 mm offset for one mode is
small and adding m = 2, 3 etc. does not change it much.
However, for a large displacement of 1.5 mm, the bunch
tail gets a bigger kick (figure 2) even when one mode is
considered. Therefore, when the bunch offset is increasing
higher order modes must be included in the simulations.
An analysis with higher order modes was performed for
1.5 mm beam offset and figure 3 shows the results when
three modes are considered. One can see that the tail gets
a much bigger kick when three modes are included than
in the case when only the first was considered. It is worth
mentioning that to run a normal sample of 105 particles in
a bunch, it normally takes a couple of minutes.

WEPCH123 Proceedings of EPAC 2006, Edinburgh, Scotland

2210 05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques



Figure 1: Bunch kick for 0.5 mm offset with one mode.

Figure 2: Bunch kick for 1.5 mm offset with one mode.

ADAPTATION TO NUMERIC SOLUTIONS

Codes such as Mafia and GDFIdL take a given charge
and current distribution and compute the EM field by solv-
ing Maxwells equations. The wake potential can then be
found by integrating along the z direction at a particular
s after the original charge. From the form of the potential,
we can do this for an arbitrary r and r ′ and several different
values of θ, and then Fourier decompose the θ distribution
to get the Fourier coefficients. Thus one can obtain a table
for the the Wm at various different values of s, and write
Wlong(s,m) and Wtrans(s,m) using interpolation for in-
termediate s values.

ACKNOWLEDGEMENTS

Thanks to Andy Wolski for setting us right on Merlin,
and German Kourevlev and Adam Mercer for help at the
start. This work is supported by the Commission of the Eu-
ropean Communities under the 6th Framework Programme
“Structuring the European Research Area”, contract num-
ber RIDS-011899.

REFERENCES

[1] MERLIN - A C++ Class Library for perform-
ing Charged Particle Accelerator Simulations,
http://www.desy.de/∼merlin/

Figure 3: Bunch kick for 1.5 mm offset with three modes.

[2] G.Y.Stupakov, Wake and Impedance,
arXIv:physics/0011011, 2000

[3] B.W.Zotter and S.A.Kheifets, Impedances and Wakes
in High-Energy Particle Accelerators, World Scientific
(1998)

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH123

05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

2211


