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Abstract 
By applying group theory to the cavity eigenmode 

problems, we can clarify the relation between the 
symmetry of rf structures and the symmetry of their 
eigenmodes. This method is very useful for classifying 
the eigenmodes in accelerating structures and for 
understanding their behavior. We first outline the method 
for the case of finite cavities where the geometric 
symmetry of a cavity is expressed by a point group. Next, 
we extend it to the case of periodic structures where the 
symmetry is expressed by a space group.  

INTRODUCTION 
Rf cavities for modern accelerators have a variety of 

symmetry such as rotational or mirror symmetries. It is 
important to understand the relation between the 
geometric symmetry of a specified cavity and the 
symmetry of its eigenmodes. This issue can be clarified 
[1] using group representation theory [2]. The geometric 
symmetry of a cavity can be expressed by a group of 
symmetry operations that keep the cavity shape 
unchanged. The mathematical structure of the symmetry 
group is expressed by several irreducible representations. 
Each eigenmode in the cavity can be classified into one of 
these irreducible representations. 

APPLICATION TO A FINITE CAVITY 
Let us consider an ideal rf cavity having a volume V, 

which is surrounded by a closed surface (or surfaces) S. 
We assume that the cavity surface S is symmetric under a 
set of symmetry operations, G={R1=E, R2, …, Rg}, where 
each Ri denotes any of rotation, inversion, or combination 
of them, and E is an identity operation. The set G forms a 
group under a multiplication of operations. 

For each operation R of the group G, we can define a 
transformation, OR, of an arbitrary vector function E(r) in 
V by  

 [ ] 1( ) ( )RO R R−=E r E r .   (1) 
We assume that the transformation OR is linear with 
respect to E. Corresponding to the group G, we define a 
set of transformations, 

1
{ , , }

gR RG O O= … . Due to the 
relations, OROS = ORS, OROE = OEOR = OR, 

1 1R R ER R
O O O O O− −= = , and (OROS)OT = OR(OSOT), the G  

forms a group. Both the groups G and G  are isomorphic 
under the correspondence R↔OR. Therefore, these groups 
have the same mathematical structure, and have the same 
irreducible representations. 

We can arrange an eigenmode problem of the cavity by 
2 2

n n nk∇ + =E E 0    (in V),    (2) 

and 
n× =n E 0 , 0n∇ ⋅ =E  (on S).  (3) 

Each eigenmode, En, can be classified into one of the 
irreducible representations of the group G  (or of G). 
Usually, a set of degenerate eigenmodes, ( )

1
αE , ..., ( )

dα

αE , 

belong to an irreducible representation, α, of dimension 
dα. These eigenmodes are transformed by any operation 

RO G∈  by 

 ( ) ( ) ( )

1

( )
d

R i j j i
j

O D R
α

α α α

=

⎡ ⎤ =⎣ ⎦ ∑E E ,  (4) 

where ( ) ( )j iD Rα  is the j-i element of the α-representation 
matrix for R. The irreducible representation of an 
eigenmode completely specifies how it transforms under 
any operation of OR. Some practical examples have been 
discussed in [1]. 

Some theorems in the representation theory are useful 
for our applications, for example, (1) two eigenmodes 
belonging to different irreducible representations are 
orthogonal to each other, and (2) when the G is an 
Abelian group, each eigenmode can be chosen as a 
simultaneous eigenfunction for all operations of RO G∈ , 
and the reverse is also true. 

APPLICATION TO PERIODIC 
STRUCTURES 

Periodic rf structures are characterized by their 
translational symmetry. Many of them have additional 
symmetry such as rotations, reflections, screws, or glides. 
The symmetry of a given structure is expressed by a space 
group. The space groups are extensively used for 
analyzing the electronic states in solid state physics. 
Similar analysis has also been developed for 
understanding electromagnetic states in photonic crystals 
[3]. By applying a similar method to our one-dimensional 
periodic structures, we can understand how the symmetry 
of an rf structure is reflected in its eigenmodes. 

To illustrate an example of general treatment, we 
consider a typical periodic structure having a period 
length of d, as shown in Fig. 1. We assume that the 
structure is rotationally symmetric about the z-axis, as 
well as mirror symmetric about the x-y plane. To simplify 
the problem, we assume that the structure comprises N-
cells where N is a huge integer, and assume a cyclic 
boundary condition at the ends of the structure. We 
consider a similar eigenmode problem to Eqs. 2 and 3 
with suitable cyclic boundary conditions.  

An operation, which takes a point at r to r’ = Rr + b, is 
denoted by the Seitz symbol, {R|b}. Then,  
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Figure 1: A rotationally-symmetric periodic structure. 
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Figure 2: Brillouin zone for the one-dimensional periodic 
structure. 

 
 { | }R R= +b r r b ,   (5) 

where R is any of the rotation, inversion, or their 
combinations. The structure in Fig. 1 has a fundamental 
period vector of  ˆdz=t , where ẑ  is the unit vector in the 
z-direction. The primitive translation vectors, n n=t t , 
with an integer n (= 0, ..., N-1), describe the complete 
translational symmetry of the structure. A set of the 
primitive translations, {ε|tn} forms a translation group T, 
where ε is an identity operation. A group of symmetry 
operations that keep the structure in Fig. 1 is given by 

1 2 6G R T R T R T= + + + ,   (6) 
where the G has been decomposed into cosets, and the 
coset representatives, R1 to R6, are given by {ε|0}, 
{C(α)|0}, {σv|0}, {I|0}, {IC(α)|0}, and {Iσv|0}, 
respectively. Here, C(α) is the rotation through α about 
the z-axis, σv is the mirror reflection in a plane containing 
the z-axis, and I is the space inversion. The translation 
group T is an invariant subgroup of the space group G. 
Note that the representatives, R2, R3, R5, and R6, contain 
continuous parameters such as an angle α.  

Corresponding to any operation {R|b} of G, we can 
define an transformation of any vector function E(r) by 

[ ] 1 1 1
{ | } { | }( ) ( ) ( )R R R RO R R− − −= = −b bE r E r E r b . (7) 

A set of O{R|b} forms a group G  which is isomorphic to G. 
Then, we can classify the eigenmodes in periodic 
structures according to irreducible representations of the 
space group G (or G ).  Our next task is to deduce the 
irreducible representations of the space group G. This can 
be done with several steps following the literature [2]. 

Irreducible Representations of the Translation 
Group 

Since the translation group T is a cyclic group of order 
N, its irreducible representations are one dimensional, and 
their characters are given by 

 ({ | }) exp( )n niχ ε = ⋅k t k t ,   (8) 
where an wavevector k is given by /p N=k K  (p = 0, ..., 
N-1), and K is a reciprocal lattice vector, ˆ(2 / )d zπ=K . 
Because N is a huge number, the vector k takes almost 
continuous values. Since k and k+K give the same 
irreducible representation, we restrict the range of k 
within the first Brillouin zone,  

 zk
d d
π π− ≤ ≤ .    (9) 

If an eigenmode, Ek, belongs to the irreducible 
representation k of the translation group T, it is 
transformed by the translation as 

{ | } ( ) ( ) exp( ) ( )n n niε ≡ − = ⋅k k kt E r E r t k t E r , (10) 
where we simply denoted { | }n

O ε t  by {ε|tn}. The above 
relation is well known as the Bloch (Floquet) theorem [4].  

The Group of the Wavevector k 
If we transform the Ek in Eq. 10 by one of the coset 

representatives, {Ri|b}, a resulted function belongs to the 
irreducible representation Rik of the translation group. For 
each k vector in the Brillouin zone, a set of different 
vectors, Rik, is called the star of k. On the other hand, 
some operations of G leave the k vector unchanged 
(allowing a difference by K). A set of such operations 
forms a subgroup, which is called the group of the 
wavevector k, and is denoted by G(k). 

The points in the one-dimensional Brillouin zone (see  
Fig. 2) can be classified into three categories according to 
their symmetries. (i) The origin Γ at kΓ = (0, 0, 0). All 
operations of G keep it unchanged. The order of the star is 
one, and the group of k is the entire space group G. (ii) 
The points Δ at kΔ = (0, 0, kz), where 0 < |kz| < π/d. The kΔ 
is transformed to itself by the coset representatives,  {ε|0}, 
{C(α)|0}, and {σv|0}, while it is transformed to -kΔ by 
{I|0}, {IC(α)| 0}, and {Iσv |0}. The star of kΔ is composed 
of two vectors, kΔ and -kΔ. The group of k is given by 

v( ) { | } { ( ) | } { | }G T C T Tε α σ= + +k 0 0 0 .  (11) 
(iii) The point X at kX = (0, 0, π/d). The group of k is the 
space group G. 

Let G0(k) denotes the point group composed of the 
rotations R of the operations {R|b} in G(k). When the 
G(k) is symmorphic, that is, when it does not contain any 
essential screws and glides, the irreducible representations 
of G(k) are given by 

 ˆ ˆ({ | }) exp( ) ( )D R i R= ⋅ Γk b k b ,  (12) 

where ˆ ( )RΓ  is an irreducible representation of the point 
group G0(k). Because the space group under consideration 
is symmorphic, its subgroup G(k) is also symmorphic, 
and thus, we can use Eq. 12. In the cases (i) and (iii), the 
point group G0(k) is given by 

h v vD { , ( ), , , ( ), }C I IC Iε α σ α σ∞ = . The irreducible 
representations of G(k) (and G) are then deduced from 
those of D∞h, as given in Table 1. In the case (ii), the point 
group is given by v vC { , ( ), }Cε α σ∞ = . The irreducible 
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Table 1: Irreducible representation matrices of the group 
of k (and of the space group) at both points of Γ (0-mode) 
and X (π-mode) for the rotationally symmetric structure, 
shown in Fig. 1. Note that exp(ik⋅tn) is 1 at Γ, while it is  
(-1)n at X. The β denotes an angle between the reflection 
plane of σv and the x-axis. 

Irr. 
Rep. 

{ε | tn} {C(α)| 0} {σv| 0} {I | 0}

A1g nie ⋅k t  1 1 1 

A1u nie ⋅k t  1 -1 -1 

A2g nie ⋅k t  1 -1 1 

A2u nie ⋅k t  1 1 -1 

Eng  0
0

n

n

i

i

e
e

⋅

⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

k t

k t

 cos sin
sin cos

n n
n n

α α
α α

−⎛ ⎞
⎜ ⎟
⎝ ⎠

cos 2 sin 2
sin 2 cos 2

n n
n n

β β
β β

⎛ ⎞
⎜ ⎟−⎝ ⎠

 1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

Enu 0
0

n

n

i

i

e
e

⋅

⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

k t

k t

 cos sin
sin cos

n n
n n
α α
α α

−⎛ ⎞
⎜ ⎟
⎝ ⎠

cos 2 sin 2
sin 2 cos 2

n n
n n

β β
β β

⎛ ⎞
⎜ ⎟−⎝ ⎠

 1 0
0 1
−⎛ ⎞
⎜ ⎟−⎝ ⎠

 
representations of G(k) are deduced from those of C∞v in 
a similar manner. 

Irreducible Representations of the Space Group 
In both cases of (i) and (iii), the irreducible 

representations of the space group G are the same as those 
of G(k) because of G(k) = G. In the case (ii), the space 
group can be decomposed as 

{ | } ( ) { | } ( )G G I Gε= +0 k 0 k .   (13) 
Let the basis functions of the irreducible representation of 
G(k) be Ek,1, ..., Ek,m. The basis of the irreducible 
representation of the entire space group G is given by 
Ek,ν and {I|0}Ek,ν (ν = 1,..., m). The irreducible 
representations of the space group are constructed from 
these basis functions. Resulted representation matrices are 
given by 2×2 block matrices, as given in Table 2. Detail 
derivation of these matrices is very similar to that in [2].  

From the irreducible representations at the points Γ and 
X (Table 1), we can see such features as: (1) there is no 
degeneracy in axially symmetric modes corresponding to 
one-dimensional representations of A1g, A1u, A2g, and A2u, 
and (2) there is two-fold degeneracy due to polarizations 
in TEn/TMn modes corresponding to two-dimensional 
representations, Eng and Enu. We can also see for the point 
Δ (see Table 2) that: (3) there is two-fold degeneracy in 
axially symmetric modes belonging to A1 and A2 due to 
forward and backward waves, and (4) there is four-fold 
degeneracy in the TEn/TMn modes belonging to En due to 
two polarizations and to forward/backward waves. 

Nonsymmorphic Space Groups 
When the group of k is nonsymmorphic, as well as the 

k is located on the Brillouin zone boundary, we need a 
special treatment, such as the Herring's method [2], for 
deriving the irreducible representations of G(k). A typical 
example is the side-coupled structure (SCS) [5], where its 
space group contains an essential screw operation, that is, 
a rotation through π followed by a non-primitive 
translation by d/2. The irreducible representations of this 

Table 2: Irreducible representation matrices of the space 
group at the Δ point for the rotationally symmetric 
structure. 

Irr. 
Rep.

{ε | tn} {C(α)| 0} 

A1 n

n

i

i

e
e

⋅

− ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

k t

k t
 

1
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

A2 n

n

i

i

e
e

⋅

− ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

k t

k t
 

1
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

En n

n

n

n

i

i

i

i

e
e

e
e

⋅

⋅

− ⋅

− ⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

k t

k t

k t

k t

 

cos sin
sin cos

cos sin
sin cos

n n
n n

n n
n n

α α
α α

α α
α α

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Irr. 
Rep.

{σv| 0} {I | 0} 

A1 1
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0 1
1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

A2 1
1

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 0 1
1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

En cos 2 sin 2
sin 2 cos 2

cos 2 sin 2
sin 2 cos 2

n n
n n

n n
n n

β β
β β

β β
β β

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 

1
1

1
1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
structure will be discussed elsewhere. 

CONCLUSIONS 
The application of group theory to the cavity 

eigenmode problems has been discussed. The symmetry 
of a finite cavity is expressed by a point group, while it is 
expressed by a space group for a periodic structure. The 
eigenmodes in a cavity can be classified into the 
irreducible representations of the symmetry group of the 
cavity. We deduced, as an example, the irreducible 
representations of the space group for a rotationally 
symmetric structure. These representations naturally 
included both polarizations and forward/backward waves. 
When the rf structure is more complicated, this method 
will be very useful for characterizing its eigenmodes 
according to their transformations by symmetry 
operations. 
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