
PARTICLE TRACKING AND SIMULATION ON THE .NET FRAMEWORK*

H. Nishimura and T. Scarvie
ALS, LBNL, Berkeley, CA 94720, USA

Abstract
Particle tracking and simulation studies are becoming

increasingly complex. In addition to the use of more
sophisticated graphics, interactive scripting is becoming
popular. Compatibility with different control systems
requires network and database capabilities. It is not a
trivial task to fulfill all the various requirements without
sacrificing runtime performance. We evaluated the
effectiveness of the .NET framework by converting a C++
simulation code to C#. The portability to other platforms
is mentioned in terms of Mono.

INTRODUCTION

Scientific Computing and .NET
Software technology has been rapidly evolving by

layering new concepts on top of traditional Object-
Oriented Programming (OOP). One of these practices is
the .NET Framework, [1] in which the C# programming
language plays a major role.

On the other hand, scientific computing in general is far
behind such trends and our field of accelerator modelling
and simulation is no exception. If C# can provide the
runtime performance sufficient for our computations, it
makes sense to move our C++ codes to C# to take
advantage of modern technologies that have been already
used in other industries. This migration should not be
difficult as C# is designed to be close to C++.

Early Experience with Java
We did a similar study[2] when Java came out. We

ported a portion of our C++ library Goemon[3] to Java
and evaluated its runtime performance. Contrary to our
expectations, Java 1.2 showed even better performance
than C++ for simple numerical calculations. However, the
availability of critical math libraries, the compatibility
with other programming languages and the graphical
capabilities were not sufficient to migrate to Java at that
time. The lack of operator overloading was also a
significant problem. It should be noted that many of these
issues have still not been resolved for Java.

C# and the .NET Platform
This time, we evaluate C#, since the situation looks

much better. It is true that we spend most of our time in
developing and debugging scientific programs, and since
CPU speed has been significantly improved, the runtime
performance should be confirmed with our real routines.
If it is sufficient, we can port our programs to C# to take
advantage of its various modern features (graphics,

networking, database, threading, testing, and
documentation tools) to create highly reliable software.

MIGRATING TO C#

Graphics Programming
Graphics programming is the primary reason that we

keep developing programs in C++ on Win32. In case of
Goemon, the physics modules have been separated from
the graphics so they are portable to multiple platforms.
However, if graphics are required, we primarily use
Borland C++ Builder for efficient GUI development, and
are therefore tied to Win32.

In case of .NET, however, graphics programming that
is sufficient for our use is standardized as a part of the
framework. If we use Mono[4], described later, the GUI
programs can be made portable to other platforms.

Math Libraries
Various kinds of math libraries are available for C#.

Externally calling routines in other languages is also
simpler than it is in Java. Also, we can use existing ANSI
C/C++ routines almost as they are by using C++/CLI[5].
Hence, the compatibility of C# with existing math
routines is sufficient. At this stage, we only need singular
value decomposition (SVD) routines from one of these
libraries, since all the other math routines we need are
available in C# already.

Differential Algebra
One of the many merits of using C++ is its flexible

support of operator overloading for user-defined types.
This capability was applied to handle the numerically
exact differentiation called differential algebra (DA)[7],
and used for lattice definitions. As operator overloading is
well supported in C#, the port was straightforward. Our
DA library in C++ allocates DA objects on stack to avoid
dynamic allocations for faster execution speed. However,
that technique is not possible in C#, so modifications
were required on the client side to use the references
effectively.

Lattice Definition
The lattice is defined in Goemon (C++) by using

operator overloading and macro definitions effectively, as
show below:

DRIFT(L, 1.23);
QUAD(QF, 0.15, 2.35);
Eline SEC1=L1+2*QF+L1;

*This work was supported by the Director, Office of Energy Research,
 Office of Basic Energy Sciences,

Material Sciences Division,
U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH145

05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

2263

Here the DRIFT macro creates a Drift object and registers
it to the table for memory management. However, C#
does not support this kind of macro definition, so we must
use “new” explicitly:

DRIFT L=new DRIFT("L",1.23);
QUAD QF=new QUAD("QF".0.15,.235);
Eline SEC1=L1+2*QF+L1;

In this case, there is no need for memory management due
to automatic and managed garbage collection
mechanisms.

Runtime Performance
The length of Goemon is about 40K lines (excluding

comments), and 30K lines have been rewritten in C# with
redesign, clean up, refactoring using automated tools, and
plentiful hand optimization that resulted in 15K lines of
C# code. After confirming its correctness, the runtime
profile was analyzed by using a profiler to improve
execution speed. The routines modified during this
process were mostly in the math units, including matrix,
vector and DA routines.

Finally, the execution speed was measured using three
tracking programs on a simplified ALS lattice with about
360 elements:

(1) 10,000 turns of a particle in 5-dim phase space.
(2) 1,000 turns of a particle in 6-dim phase space.
(3) 100 turns of a linear DA map.

Programs were written in both C++ and C# to produce

identical results. Case (1) is basically multiplications of
4x5 matrices to a 5-dim vector which is a base of most of
the linear calculations. Case (2) is in 6-dim including
time. It uses the 2nd order symplectic integrator that is a
series of drift-kick-drift segments. Each quadrupole or
bending magnet uses 20 segments. Case (3) is for a DA
map that uses DA objects intensively.

Tables 1 and 2 show the results from Pentium 4 PCs
running Windows XP at 3.4 GHz and 2.8 GHz. The C++
compiler is Visual C++ 2005, and C# is Visual C# 2005
on .NET Framework 2.0.

Table 1. Performance on Intel Pentium 4 at 3.4 GHz.
Compiler Test1 Test2 Test3

C++ 0.283 sec 0.388 sec 0.247 sec
C# 0.233 sec 0.786 sec 0.244 sec

Table 2. Performance on Intel Pentium 4 at 2.8 GHz.
Compiler Test1 Test2 Test3

C++ 0.282 sec 0.469 sec 0.237 sec
C# 0.394 sec 0.995 sec 0.297 sec

Table 3 is the case of an AMD Athlon 4800+ PC

running Windows XP x64 at 4.8 GHz. There are 32-bit
and 64-bit versions in the case of C++, while the C#
assembly stays unchanged.

Table 3. Performance on AMD Athlon 4800+ at 4.8 GHz
Compiler Test1 Test2 Test3
C++ /32 0.263 sec 0.294 sec 0.197 sec
C++/64 0.247 sec 0.223 sec 0.145 sec

C# 0.220 sec 0.386 sec 0.153 sec

Although these tests are not regulated, they indicate

that the runtime performance of C# is not only sufficient,
but sometimes exceeds that of the native codes, due to
careful optimizations.

The execution speeds of application programs are
subject to the efficiency of their fitting routines, including
closed-orbit finders. Therefore, it is not straight forward
to compare two versions of programs in C++ and in C#.
Generally speaking, C# runs a little bit slower than C++,
but is always sufficiently fast in our experience.

Compared to our previous Java-based study[2], the
execution speed has become about 20 times faster since
1999, when we were using Pentium 2 computers at 500
MHz. However, we still spend most of our time
developing and debugging programs, and so we can
safely conclude that the runtime performance of C# is
quite adequate for our scientific computations.

Generic and Serialization
Goemon in C# is in a process of adopting two of the

many new features of C#: generic and serialization.
Generic is a powerful mechanism of using the same

routine with different variable types, which efficiently
simplifies class design. In the case of C++, it is supported
as templates. However, it often slows compiling speed
significantly, and so is not suitable for the software
development phase. On the other hand, C# supports
generics with no noticeable penalty, so it can be used for
our purposes very effectively.

Serialization is an automated load/restore mechanism of
data. It simplifies and speeds up file I/O considerably.

Together, these two features will improve the design
and implementation of Goemon in C# in the near future.

Managed/Unmanaged Routines
C# programs are managed by default. This means that

resources such as memory are automatically managed by
the system to run in a safe mode. However, when legacy
external routines must be called, we can turn off this
safety feature to allow unsafe behaviors. This mode is
called unmanaged.

Up to this point, Goemon in C# is a managed code, and
therefore is portable as described in the next section.
Whenever faster speed is needed, or external calls are
required, we have the option of making critical routines
unmanaged.

C++/CLI can be used to access ANSI C/C++ routines
with minimum modification by skipping a dynamic link
library (DLL) layer.

WEPCH145 Proceedings of EPAC 2006, Edinburgh, Scotland

2264 05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

PORTABILIY BROUGHT BY MONO
Microsoft supports .NET only on its Windows

platforms. However, there have been several independent
implementations that cover other operating systems.
Mono[5] is one of these implementations, covering
Windows, Linux, Mac, Solaris and BSD. While it does
not completely support .NET 2.0, it has been adequate to
run console mode C# programs developed on Windows.
By booting the PC used in Table 2 from a Knoppix 4.02
DVD, we recompiled the C++ programs with GCC 3.4.2,
and C# with MCS in Mono 1.1.8. The results are shown
in Table 4.

Table 4. Performance on Intel Pentium 4 at 2.8 GHz.
Compiler Test1 Test2 Test3

GC++ 0.500 sec 0.680 sec 0.335 sec
MONO C# 0.471 sec 0.938 sec 0.342 sec

A .NET GUI program developed on Windows in C#

using WinForm is also becoming portable on Mono. Basic
WinForm components have been ported to other
platforms already.

INTERACTIVE SCRIPTING

Interactive Scripting and C++
Interactive scripting is a common and useful tool for

accelerator studies, but it typically has been outside the
scope of OOP. However, applications such as the
MATLAB Middle Layer[9] at the Advanced Light Source
have demonstrated that it is quite powerful, especially for
machine studies that may require continuous changes in
programming logic.

We evaluated the use of Python to provide this
capability with Goemon[10]. However, object methods
have to be exported as C APIs (application programming
interfaces) in a DLL, which is not a simple process since
OOP features must be concealed.

Interactive Scripting and .NET
The reflection mechanism allows for figuring out the

attributes of an object that has been dynamically loaded at
runtime. This method makes multiple interactive scripting
languages available today. For example, we can use
IronPython[11] to access .NET assemblies directly at
runtime. Although Python does not support matrices and
graphics as Matlab does, this capability is quite powerful.

We take an example we used previously[9] and run it
on IronPython with minor modifications:

>>> from Goemon import *
>>> SR=ALSSRW()
>>> SR.fitNuEta(14.20,8.20,0.06)
True
>>> SR.setKQD(7,2,SR.getKQD(7,2)*1.02)
>>> SR.setKHCM(27,0.001)
>>> SR.getCOD(0.0)
>>> X=SR.getBPMX(40)

>>> X
0.000979172815796

Here is the content:
(1) Loads the Goemon assembly built by C#.
(2) Create an object of the ALS storage ring (full lattice).
(3) Fit tunes and dispersion.
(4) Increase the strength of SR07C QD2 by 2%.
(5) Set the 27th horizontal steering to kick 1 mrad.
(6) Calculate the COD for an on-energy particle.
(7) Save the horizontal orbit at the 40th BPM to X.
(8) Print X.

We take this as one of the most significant benefits of
moving to C#.

CONCLUSION
We have ported Goemon to C#. Its performance is

sufficient for our accelerator modelling and simulation
studies. IronPython works quite effectively for interactive
scripting. Migration to .NET seems to be a reasonable
choice at this point in time.

REFERENCES
[1] http://msdn.microsoft.com/netframework/.

[2] H. Nishimura, PCaPAC '99, Tsukuba, Japan, 1999.
http://conference.kek.jp/pcapac99/cdrom/paper/tu/tu1
.pdf.

[3] H. Nishimura, PAC’01, Chicago, p3066.

[4] H. Nishimura and C. Timossi, PCaPAC’05, Hayama,
Japan,2005.

 http://conference.kek.jp/pcapac2005/paper/TUB2.pdf

[5] http://www.mono-project.com.

[6] S.R.G. Fraser, " Pro Visual C++/CLI and the .NET2.0
Platform", Apress, ISBN 1590596404. 1005.

[7] M.Berz, SSC-152, 1988. Leo Michelotti, PAC’89,
p839. N. Malitskey, et.al., SSCL-659,1994.

[9] G. Portmann, J. Corbett, A. Terebilo, PCaPAC’05,
Hayama, Japan, 2005.

 http://repositories.cdlib.org/cgi/viewcontent.cgi?articl
e=3163&context=lbnl.

Kosuge, K. Nigorikawa, PCaPAC’05, Hayama,
Japan, 2005.

[11] http://www.codeplex.com/Wiki/View.aspx?ProjectNa

[10] H. Nishimura, C. A.Timossi, M. E. Urashka, T.

 http://conference.kek.jp/pcapac2005/paper/WEP34.pdf

me=IronPython.

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH145

05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

2265

