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COMMENT ON HEALY'SSYMPLECTIFICATION ALGORITHM*
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Abstract

For long-term tracking, it is important to have sym-
plectic maps for the various electromagnetic elements in
an accelerator ring. While many standard elements are
handled well by modern tracking programs, new magnet
configurations (e.g., a helical dipole with a superimposed
solenoid[1]) are being used in real accelerators. Transport
matrices and higher terms may be calculated by numeri-
cal integration through model-generated or measured field
maps. Theresulting matrices are most likely not quite sym-
plectic due to numerical errorsin the integrators as well as
thefield maps. Inhisthesig[2], Healy presentedasimple al-
gorithm to symplectify amatrix. While the method is quite
robust, this paper presents a discussion of its limitations.

INTRODUCTION

A nice algorithm for tweaking an almost symplectic ma-
trix into a symplectic matrix has been given by Healy in
his thesig[2]. In order to understand the limitations of
the method, it is worthwhile to present a derivation of the
method, particularly since it has sometimes been quoted
incorrectly[3].

INVERSION FORMULAE

Given two sgquare matrices S and W of the same rank
with S2 = —I whereI isthe identity matrix then

(I-WS)S(I+SW)=(S+W)I+SW)
=(S—W)(I-SW)
=I+WS)SI-SW). (1)

A sguare 2n x 2n real matrix, M, is symplectic in a par-

ticular representation of the group Sp(2n, ) with respect
tothemetric S, if it satisfies

MTSM = S. 2

In accelerator physics we usually require S to be a block
diagonal 2n x 2n matrix with

0 -1
n €
in the diagonal blocks. It is worth noting that S has the

properties

ST=81=-8, and S?=-1 4
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Theorem: A symplectic matrix M may be written in the
form
M= (I+SW)I-SW) !, (5)

if and only if W is a symmetric matrix, and where S is
the metric for the selected representation of the symplectic
group. This statement must be qualified with the require-
ment that

I - SW|#0. (6)

A discussion of the restrictions will be given later.
Proof:
Show that if W is symmetric, then M is symplectic:
MTSM
=I-WTsh) 11+ wTsTs
x (I+SW)(I—-SW)!
=TI+ WS) (I -WS)S(I+SW)(I-SW)!
=I+WS) "I+ WS)S(I-SW)(I-SW)!
=S. 7
Therefore M is symplecticif W is symmetric.
Now let us assumethat W is not symmetric, so it can be
written as the sum of symmetric and antisymmetric matri-

ces.
W =P+Q, (8)

whereP = PT and Q = —QT.
MTSM =S
I -WTSH= 11 +WTSTS(I + SW)(I-SW) !

I-W'SH'(S+P-Q-P-Q+W'SW)
x (I-SW)~1
=([I-W'ST)T'[(S - W) (I -SW) - 4Q]

x (I-SW)™!
=S —4I-WTshH=1QI-sw) L 9)

So assuming that theinversesinthelast lineexist then Q =
0. (Actualy theinverse (I — WTST)~! must exigt if its
transpose (I — SW) ! exists) This provesthe theorem.

Given the symplectic matrix M, form a new matrix

V=SI-M)I+M)" (10)
Then
V+VM=S-SM.
(S+V)M=S-V
M= (S+V) *(S-V). (11)
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Taking the transpose gives

MT = (ST -vhH T +vhH (12)
and we can calculate theinversevia
M~ =8sM'ST =8(ST - vT) (ST +VvT)~'sT
=I-SV)I+SV) " (13)
Inverting this yields
M= (I+SV)I-SV)!, (14)

whichisidentical informtoEq.5,s0V = W.

THE SYMPLECTIFICATION
ALGORITHM

The symplectification a gorithm for an amost symplec-
tic matrix M isto calculate V' by the above Eq. 10 (assum-
ing that [T — M| # 0), then create a symmetric matrix

T
W= v +2V (15)
which then may be used to calculate a new matrix
M = (I+SW)(I-SW) !, (16)

assuming that |I — SW| # 0. Thisnew matrix M’ must be
symplectic by the previous theorem, and it should be close
to the original matrix M. Problems with the method arise
in constructing V when M is an “exceptiona” matrix[4],
i. e, |I+ M| =0.Thiswill happen when M has at least
one eigenvalue equal to —1. If [T — M| # 0, then since
—M must also be symplectic, we can define the new almost
symmetric matrix by

V=SI+M)(I-M)! (17)

with oo
WYtV (18)
M = —(I+SW)(I—SW) .. (19)

Now we must have |T — SV/\\T\ #0,and |I — M| # 0.

BREAKDOWN OF THE METHOD

If M hasat least one eigenvalueequal to +1, and another
equal to —1 then

T—M)|=I+M]=0. (20)

and this method may not work.

For an exampl e of this, we must be considering a matrix
for at least two planes, since the symplectic matrix must
have pairs of eigenvaluesequal to 1 and —1. The matrix

10 0 0
01 0 0

M= 00 -1 O (21)
00 0 -1
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is symplectic and obviously has [T+ M| = 0, so we cannot
hope to construct a symmetric V in this case.
Consider the following perturbation of this matrix

1+0 0 0

M=| ; | (22)
0 0 0 -1
Then
246 0 0 0\ /=6 0 0 O\
- 0 2-6 0o0|[l0 & 0 0
V=8| o 0o0]lo 020
0 o 0 0/\o 00 2
0 -2 0 0
1|l=6=2 0 o0 0
5 0 0 0 0f" (23)
0 0 0 0

While for nonzero values of § this exists and is symmetric,
the limit of V blows up as § goes to zero, however

0 -1 0 0
~ 2|-1 0 0 0
W_g o o o0 ol and (249)
0 0 0 0
s
#0000 0
= |0 e 000 (25)
0 0o -1 0
0 0 0 -1
Taking the limit gives back the unperturbed matrix
1 0 0 0
.o 01 0 0
ImM=1g 0 -1 0| (26)
00 0 -1
as expected.
Consider adifferent perturbation of the matrix M:
1+6 O 0 0
o 145 0 0
M= 0 0 -1 0 |’ 27)
0 0 0 -1
then
246 0 0 0\ /-5 0 0 0\
S 0 246 0 0 0 -6 0 0
V=S5 0 0 00 0O 0 20
0 0 0 0 0 0 0 2
0 0+2 0 0
11-6-2 0 0 0
5| o 0 00 (28)
0 0 0 0
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Again for nonzero values of ¢ this exists, but is antisym-
metric so that

0 0 0O
%1500 0 @)
0 0 0O
Thisleadsto M’ =1, so
(}13%1\/1’:17&1\/1, (30)

which might be unexpected, and is quite different from the
original unperturbed matrix.

COMMENT ON AN ERROR IN REF. 3

In Eqg. 14.13 of Ref. [3], Isalin states that a symplectic
matrix F = exp(SG) with a symmetric matrix G can be
written in the form

F = [I + tanh(SG/2)][I — tanh(SG/2)] !

= I+ W)I-W) ! <« Incorrect (31)
where W is symmetric if and only if F is symplectic. This
far second line is incorrect, and is probably just a typo.
(Ref. [3] isonly availablein an unfinished draft, so we must
be careful when using it as a source.) He should have re-
placed W by SW in this equation. The middle part of the

equation is correct in most cases and basically comes from

hZ inh Z -1
e’ = oS TeMig i +S?n i = (1—|— tanh E) (1— tanhf)
cosh § — sinh § 2 2
(32)

and the fact that Hamilton’s equations may be written in
theform

X
d— = -SCX = SGX, (33
ds
where ,
0°‘H
Ci'*cji—axian~ (34)

Hamilton's equations give the general form of the genera-
tors for this matrix representation of the symplectic group
Sp(2n, r) with the metric S. For real x, Eq. 32 is analytic
since | tanh(x/2)| < 1, however for complex x the hyper-
bolic tangent can take on values of 1, so that Eq. 32 has
poles. Inthe case where x = SG is agenerator of a sym-
plectic matrix, then the modified equation becomes

eSC = [I + tanh(SG/2)][I — tanh(SG/2)]7!, (35)
and this factorization will not work when tanh(SG/2) has
an eigenvalue equal to 1. We should also note that since
tanh(x) = — tanh(—=z) is an odd function it can be ex-

panded as
tanh(z) = Z APt (36)
=0
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so that
S

0]

tanh

7N\

'FLJS o

I
<)

B e l(SG)2j+1S - g
)S—jZOA]72 = Stanh ( =

4 (SG)2‘7‘+1S

S ()

J

o (59)o] - s ()]

From this it should be obvious that the last part of Eq. 31
should have been written as

(I+SW)(I—SW)! (39)

for symmetric W.

SU(N) AND SO(N) MATRICES

Asanaside, it is perhapsworth mentioning similar inver-
sion formulae for specia unitary and orthogonal matrices.
A specia unitary matrix M must satisfy the formula

MM =1, (39)

where the dagger represents the complex conjugate of the
matrix. The corresponding inversion formulae are

V=I-M)I+M)"' ad (40)
M=I+V){(I-V), (41)
where V is antihermitian: VI = —V. An amost anti-

hermitian matrix V may be tweaked into an antihermitian
matrix viathe equation

N N VA

V= v-v . (42)

2
Special orthogona matrices must satisfy the same for-

mulae since they form areal subgroup of the special unitary
matrices; in this case, the dagger just becomes the trans-
pose operator.
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