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Abstract

For long-term tracking, it is important to have sym-
plectic maps for the various electromagnetic elements in
an accelerator ring. While many standard elements are
handled well by modern tracking programs, new magnet
configurations (e.g., a helical dipole with a superimposed
solenoid[1]) are being used in real accelerators. Transport
matrices and higher terms may be calculated by numeri-
cal integration through model-generated or measured field
maps. The resulting matrices are most likely not quite sym-
plectic due to numerical errors in the integrators as well as
the field maps. In his thesis[2], Healy presented a simple al-
gorithm to symplectify a matrix. While the method is quite
robust, this paper presents a discussion of its limitations.

INTRODUCTION

A nice algorithm for tweaking an almost symplectic ma-
trix into a symplectic matrix has been given by Healy in
his thesis[2]. In order to understand the limitations of
the method, it is worthwhile to present a derivation of the
method, particularly since it has sometimes been quoted
incorrectly[3].

INVERSION FORMULAE

Given two square matrices S and W of the same rank
with S2 = −I where I is the identity matrix then

(I−WS)S(I + SW) = (S + W)(I + SW)
= (S−W)(I− SW)
= (I + WS)S(I− SW). (1)

A square 2n×2n real matrix, M, is symplectic in a par-
ticular representation of the group Sp(2n, r) with respect
to the metric S, if it satisfies

MTSM = S. (2)

In accelerator physics we usually require S to be a block
diagonal 2n× 2n matrix with(

0 −1
1 0

)
(3)

in the diagonal blocks. It is worth noting that S has the
properties

ST = S−1 = −S, and S2 = −I. (4)
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Theorem: A symplectic matrix M may be written in the
form

M = (I + SW)(I− SW)−1, (5)

if and only if W is a symmetric matrix, and where S is
the metric for the selected representation of the symplectic
group. This statement must be qualified with the require-
ment that

|I− SW| �= 0. (6)

A discussion of the restrictions will be given later.

Proof:

Show that if W is symmetric, then M is symplectic:

MTSM

= (I−WTST)−1(I + WTST)S

× (I + SW)(I− SW)−1

= (I + WS)−1(I−WS)S(I + SW)(I − SW)−1

= (I + WS)−1(I + WS)S(I− SW)(I − SW)−1

= S. (7)

Therefore M is symplectic if W is symmetric.
Now let us assume that W is not symmetric, so it can be

written as the sum of symmetric and antisymmetric matri-
ces:

W = P + Q, (8)

where P = PT and Q = −QT.

MTSM = S

= (I−WTST)−1(I +WTST)S(I + SW)(I−SW)−1

= (I−WTST)−1(S + P−Q−P−Q + WTSW)

× (I− SW)−1

= (I−WTST)−1[(S−WT)(I − SW)− 4Q]

× (I− SW)−1

= S− 4(I−WTST)−1Q(I− SW)−1. (9)

So assuming that the inverses in the last line exist then Q =
0. (Actually the inverse (I − WTST)−1 must exist if its
transpose (I− SW)−1 exists.) This proves the theorem.

Given the symplectic matrix M, form a new matrix

V = S(I−M)(I + M)−1. (10)

Then

V + VM = S− SM.

(S + V)M = S−V

M = (S + V)−1(S−V). (11)

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH152

05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

2281



Taking the transpose gives

MT = (ST −VT)(ST + VT)−1, (12)

and we can calculate the inverse via

M−1 = SMTST = S(ST −VT)(ST + VT)−1ST

= (I− SV)(I + SV)−1. (13)

Inverting this yields

M = (I + SV)(I− SV)−1, (14)

which is identical in form to Eq. 5, so V = W.

THE SYMPLECTIFICATION
ALGORITHM

The symplectification algorithm for an almost symplec-
tic matrix M is to calculate V by the above Eq. 10 (assum-
ing that |I−M| �= 0), then create a symmetric matrix

W =
V + VT

2
(15)

which then may be used to calculate a new matrix

M′ = (I + SW)(I− SW)−1, (16)

assuming that |I−SW| �= 0. This new matrix M′ must be
symplectic by the previous theorem, and it should be close
to the original matrix M. Problems with the method arise
in constructing V when M is an “exceptional” matrix[4],
i. e., |I + M| = 0. This will happen when M has at least
one eigenvalue equal to −1. If |I − M| �= 0, then since
−M must also be symplectic, we can define the new almost
symmetric matrix by

V̂ = S(I + M)(I−M)−1 (17)

with

Ŵ =
V̂ + V̂T

2
. (18)

M′ = −(I + SŴ)(I− SŴ)−1. (19)

Now we must have |I− SŴ| �= 0, and |I−M| �= 0.

BREAKDOWN OF THE METHOD

If M has at least one eigenvalue equal to +1, and another
equal to −1 then

|I−M| = |I + M| = 0. (20)

and this method may not work.
For an example of this, we must be considering a matrix

for at least two planes, since the symplectic matrix must
have pairs of eigenvalues equal to 1 and−1. The matrix

M =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ (21)

is symplectic and obviously has |I±M| = 0, so we cannot
hope to construct a symmetric V in this case.

Consider the following perturbation of this matrix

M =

⎛
⎜⎜⎝

1 + δ 0 0 0
0 1− δ 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (22)

Then

V̂ = S

⎛
⎜⎜⎝

2 + δ 0 0 0
0 2− δ 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−δ 0 0 0
0 δ 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠
−1

=
1
δ

⎛
⎜⎜⎝

0 δ − 2 0 0
−δ − 2 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (23)

While for nonzero values of δ this exists and is symmetric,
the limit of V̂ blows up as δ goes to zero, however

Ŵ =
2
δ

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , and (24)

M′ =

⎛
⎜⎜⎝

2+δ
2−δ 0 0 0
0 2−δ

2+δ 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (25)

Taking the limit gives back the unperturbed matrix

lim
δ→0

M′ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (26)

as expected.
Consider a different perturbation of the matrix M:

M =

⎛
⎜⎜⎝

1 + δ 0 0 0
0 1 + δ 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (27)

then

V̂ = S

⎛
⎜⎜⎝

2 + δ 0 0 0
0 2 + δ 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−δ 0 0 0
0 −δ 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠
−1

=
1
δ

⎛
⎜⎜⎝

0 δ + 2 0 0
−δ − 2 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (28)
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Again for nonzero values of δ this exists, but is antisym-
metric so that

Ŵ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (29)

This leads to M′ = I, so

lim
δ→0

M′ = I �= M, (30)

which might be unexpected, and is quite different from the
original unperturbed matrix.

COMMENT ON AN ERROR IN REF. 3

In Eq. 14.13 of Ref. [3], Iselin states that a symplectic
matrix F = exp(SG) with a symmetric matrix G can be
written in the form

F = [I + tanh(SG/2)][I− tanh(SG/2)]−1

= (I + W)(I−W)−1, ⇐ Incorrect (31)

where W is symmetric if and only if F is symplectic. This
far second line is incorrect, and is probably just a typo.
(Ref. [3] is only available in an unfinished draft, so we must
be careful when using it as a source.) He should have re-
placed W by SW in this equation. The middle part of the
equation is correct in most cases and basically comes from

ex =
cosh x

2 + sinh x
2

cosh x
2 − sinh x

2

=
(
1+ tanh

x

2

) (
1− tanh

x

2

)−1

(32)
and the fact that Hamilton’s equations may be written in
the form

dX
ds

= −SCX = SGX, (33)

where

Cij = Cji =
∂2H

∂Xi∂Xj
. (34)

Hamilton’s equations give the general form of the genera-
tors for this matrix representation of the symplectic group
Sp(2n, r) with the metric S. For real x, Eq. 32 is analytic
since | tanh(x/2)| < 1, however for complex x the hyper-
bolic tangent can take on values of 1, so that Eq. 32 has
poles. In the case where x = SG is a generator of a sym-
plectic matrix, then the modified equation becomes

eSG = [I + tanh(SG/2)][I− tanh(SG/2)]−1, (35)

and this factorization will not work when tanh(SG/2) has
an eigenvalue equal to 1. We should also note that since
tanh(x) = − tanh(−x) is an odd function it can be ex-
panded as

tanh(x) =
∞∑

j=0

Ajx
2j+1, (36)

so that

tanh
(

SG
2

)
S =

∞∑
j=0

Aj
(SG)2j+1S

2
= S tanh

(
GS
2

)

=
∞∑

j=0

Aj
(SG)2j+1S

2
(−1)2j+2

=
[
tanh

(
SG
2

)
S
]T

=
[
S tanh

(
GS
2

)]T

(37)

From this it should be obvious that the last part of Eq. 31
should have been written as

(I + SW)(I− SW)−1 (38)

for symmetric W.

SU(N) AND SO(N) MATRICES

As an aside, it is perhaps worth mentioning similar inver-
sion formulae for special unitary and orthogonal matrices.
A special unitary matrix M must satisfy the formula

M†M = I, (39)

where the dagger represents the complex conjugate of the
matrix. The corresponding inversion formulae are

V = (I−M)(I + M)−1 and (40)

M = (I + V)−1(I−V), (41)

where V is antihermitian: V† = −V. An almost anti-
hermitian matrix V may be tweaked into an antihermitian
matrix via the equation

V̂ =
V −V†

2
. (42)

Special orthogonal matrices must satisfy the same for-
mulae since they form a real subgroup of the special unitary
matrices; in this case, the dagger just becomes the trans-
pose operator.

ACKNOWLEDGMENTS

I would like to thank Christoph Montag Alfredo Luccio,
and Yun Luo for helpful discussions.

REFERENCES

[1] Erich Willen et al., “Superconducting Helical Snake Magnet
for the AGS”, PAC2005, 2935 (2005).

[2] L. M. Healy, ”Lie Algebraic Methods for Treating Parameter
Errors in Particle Accelerators”, Doctoral Thesis. University
of Maryland, unpublished (1986).

[3] F. Christoph Iselin, The MAD Program Physical Methods
Manual, CERN/SL/92-?? (AP), unfinished report (1994).

[4] Hermann Weyl, The Classical Groups, Princeton, NJ (1946).

[5] David Sagan, The Bmad Reference Manual, Rev. 3.6, (2004).

Proceedings of EPAC 2006, Edinburgh, Scotland WEPCH152

05 Beam Dynamics and Electromagnetic Fields
D05 Code Developments and Simulation Techniques

2283


