High-Gradient
Superconducting Radiofrequency Cavities
for Particle Acceleration

Lutz.Lille@desy.de
DESY -MPY-
EPAC’06
29.6.2006
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* Limiting Mechanisms
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— Surface Preparation
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Thank You!

* To the TESLA Technology Collaboration for
the support during the last years

* To many people for viewgraphs

— J. Sekutowicz, K. Saito, E. Kako, A. Matheisen,
H. Weise, D. Kostin, R. Lange, P. Sekalski, M.
Liepe, M. Kelly, K. Shepard, H. Padamsee
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Superconducting RF History :
Installed Accelerating Voltage
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Superconducting RF Present and Future:
Accelerator Projects Featuring SRF Cavities

Disclaimer: The focus is mostly on electron machines with beta =1

LINACs

— ILC, European XFEL, FLASH, ELBE, BESSY-FEL, MIT Bates, FERMILAB 8 GeV,
SNS

Recirculating LINACS
— S-DALINAC, CEBAF, LUX, Arc-en-Ciel, Neutrino Factory/Muon Collider
ERLs
— JLAB FEL, JAERI, Cornell FEL, PERL (BNL), 4GLS, KEK-ERL, RHIC-I
Storage rings
— HEP
« KEK-B, CESR, HERA, Tristan, LEP
— Synchrotron Light
« SOLEIL, CHESS, Canadian Light Source, Taiwan Light Source, DIAMOND

No guarantee for completeness...
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Superconducting Cavities
« SC cavities offer

— a surface resistance which is six orders of
magnitude lower than normal conductors (NC)

— high efficiency, even when cooling is included
* large currents can be accelerated
* high duty cycle up to continuous wave (cw) operation

— low frequency, large aperture
— high accelerating gradients

— attractive for a wide range of projects and a lot of
ideas

« E.g. XFEL, Linear collider, Energy Recovery LINACS

16.07.2006
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Surface Resistance R (T)
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S. Casalbuoni, Susceptibility
L. von Sawilski,

D Measurements:
Bistetichictal Niobium Properties

« Surface treatment does not change the bulk
properties e.g. B, and B,

« Surface critical field B_; depends on surface

preparation

— Electropolishing (EP) vs. Standard etch (BCP)

— Baking
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Proof-of-Principle: TESLA Nine-cell Test
(ILC Baseline Cavity)
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Examples for Limiting Mechanisms

* Understanding Multipactoring
* A few computer codes developed
* Spherical shape realized at Genova
and qualified at Cornell & Wuppertal
« Understanding Field Emission
* Emitters were localized and analyzed
* |mproved treatments and cleanness

e Cure thermal Breakdown
* Higher RRR Nb
* Deeper control for inclusions

1984/85: First great success

+ A pair of 1.5 GHz cavities developed and
tested (in CESR) at Cornell

o Chosen for CEBAF at TUNAF
for a nominal E;.. = 5 MV/m
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Cleanroom Technology for SC Cavities

» the small surface resistance of the superconducting

necessitates avoidance of NC contaminations larger
2| than a few uym

: » detailed material specification and quality

control are done

» tight specification for fabrication e.g. welds

have been implemented

* clean room technology is a must (e.g. QC with

particle counts, monitoring of water quality,

documentation of processes)

The inter-cavity connectlon is done in
class 10 cleanrooms




Performance of FLASH Accelerator Modul From H. Weise/ D. Kostin

A State-of-the-art module

* cryogenic type lli

In single cavity measurements 6 _
- latest coupler generation out of 8 cavities reach 30 MV/m! Cavity tests:

HEl Vertical (CW)
 Etched (BCP) cavities EZ=3 Horizontal (10Hz)
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Surface Preparation:
Electropolishing

» Electropolishing (EP) of niobium surfaces is a key
technology to achieve the highest electrical and magnetic
surface fields

« KEK/ Nomura Plating pioneered application of EP to
elliptical niobium cavities since TRISTAN using a Siemens
recipe from the 1970s

« Since then EP has also been successfully applied to

— Low-Beta Quarter wave structures
— TESLA nine-cells
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Electropolishing Offers
Improved Surface Quality
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Electropolished 1,3 GHz Elliptical Niobium Cavities | % ] @] ﬁ’(
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One-cell cavities Test temperature: 1.6 K
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Cavity Processing: y
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ANL EP: Beta=0.63 Multi-Spoke Cavity

%

. g »Q-disease was observed; hydrogen
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hing Setup at DESY

-k
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TESLA Nine-Cells: Low-Power Results
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Eacc[MV/M]

FLASH Module 6: High Gradient Module

O Vertical low-power

This module serves

- Demonstration of
high operational

- Industry and partner
labs to participate in
assembly process

45 B Horizontal high power
40 |7 L Module Test Stand
O FLASH

35 |
30
25 | two purposes:
20
1571 gradient
10
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Cavity Position in Module
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Work needed: Reproducibility in the EP Process

1.E+11 Avoiding field
emission is an
T G e o ongoing struggle !
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Active Tuner

» Lorentz force detunes the cavity during one RF pulse
— If detuning is too large extra RF power would be needed

 Actively compensate the detuning of the cavity during
the RF pulse by mechanical means

* Piezoelectric elements are suitable for this application

16.07.2006
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1 field in the cavities:
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(MV/m)?

Remember: Cavity
bandwidth with main
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Proof-of-Principle: Piezoelectric Tuner
M. Liepe, S. Simrock, W.D.-Moeller

Lutz Lille DESY -MPY-
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Sensor-Actuator: Piezoelectric Elements
in the Tuning Mechanism

o
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Damping of the ringing between pulses (5Hz operation)
RF pulse RF pulse RF pulse

A .
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Frequency stabilization during Blue: With piezo
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Resonant Excitation of the Cavity

T
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Frequency stabilization
at 35 MV/m

Blue: With piezo
Red: Without piezo

Frequency detuning of ~1000 Hz
compensated with resonant
excitation of a mechanical cavity
resonance at 230 Hz.

NOTE: This is rather an
demonstration of the capability of
active tuning. Application in a real
machine needs investigation.

16.07.2006



Work to be done for projects ahead
- XFEL

— Transferring knowledge to industry

» Cavity manufacture done in industry since the formation of the TESLA collaboration
— Also for auxiliaries

» Cavity Processes
— Electropolishing has started

» Module manufacturing and assembly
— Studies with participation of industry in progress (see module 6)

« |[LC
— Proof-of-existence is there!
— Need to increase yield of getting ‘good’ cavities
» Surface preparation is the clue
— Further look into cost reduction

» Other cavity shapes
» Other materials

— Involve industry in an early stage
« Other projects (e.g. see Susan Smith’s Talk)
— Higher beam currents
« E.g. HOM damping
— CW operation
- E.g. Higher Q,

Lutz Lille DESY -MPY- 16.07.2006
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* Very high gradient (up to 40 MV/m), high Q, single-cell
cavities have been prepared

« Study on improved quality control measures at DESY and
Henkel

— E.g. Improved parameter-control of electrolytes
« Upto three-cell 1.3 GHz cavities can be treated currently

Lutz Lilje DESY -MPY- EpAc @ 16.07.2006




ILC: Shapes

« TESLA shape
— Baseline

* Alternative Shapes

— Main Feature
» Designed for

— Lower H,.,/E,.. : magnetic field limit
« Caveat
— Higher E . /E . : field emission

— ‘Low-Loss’ shape (LL)
 Originally designed for lower cryo losses
— Re-entrant shape (RE)

16.07.2006
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HOM coupler

TESLA Cavity

Design SO

power coupler

* Frequency choice 115.4rm
— Lower frequency better for 1036m
* RF losses (BCS surface resistance) 1256m
* Lower wakefields Figure 2.1.3: Side view of the 9-cell cavity with the main power coupler port and two

higher-order mode couplers.

— 1.3 GHz klystrons were available conical head plate

« Cavity RF Layout

— Number of cells determined by
maximum cell-to-cell coupling k. 7
(field flatness) Z
— Low E .. /E (Iess sensitive to field
em|SS|on) —
— End cells asymmetric
» Avoid trapping of TE121 higher order
mode % °
» Keep TM010 and first two dipole

bands mode flat

stiffening ring
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1. Introduction: Evolution of the elliptical cavities cont.
Example: 1.3 GHz inner cells for TESLA and ILC

[mm]
[%] : : field flatness

- max gradient (E limit)

[MmT/(MV/m)] max gradient (B limit)
[Q] stored energy

[Q] dissipation
[*Q] dissipation (Cryo limit)

SLAC, January 25th, 2005. Presented by J. Sekutowicz




1. Introduction: Ciriteria, cont.

“Hunting” for high gradients goes together with “hunting” for low cryogenic loss.
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SLAC, January 25th, 2005. Presented by J. Sekutowicz
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Conclusion

SCRF cavities have a broad range of applications

Technology matured over the recent years
— E.g. commercially available SCRF systems

Challenges are the reproducibility of very high
gradients and cost reduction

— 35 MV/m has been demonstrated several times
— A production-like process is under development

A lot of working ongoing for the XFEL and ILC

— It is a big asset for both of them that they still can profit
from each other

Single-cells have shown more than 50 () MV/m
— First tests on multi-cells are underway

16.07.2006
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Backup
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Cavity Test Inside a Module (ctd.)

10 " B . Ld Low power test
N Cavity AC72 O High power pulsed test 1Hz
- VAN High power pulsed test 5Hz
B 3K Accelerator RF test
R sl a0 N0 S o
n—Eﬁ_| ' { Ty — =+
— i h ih———i:; —F——
Qo 1010 — : t -Ej ) | :-T :';_ .
10°

0 5 10 15 25 30 35 40

20
Eace [MV/m]

One of the electropolished cavities (AC72) was installed into an accelerating module for
the VUV-FEL

Very low cryogenic losses as in high power tests
Standard X-ray radiation measurement indicates no radiation up to 35 MV/m
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# Cavities

Distribution of Maximum Operational SRF Cavity
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Goals of the TESLA Test Facility Linac

Test all the
components in a ) 1256 mm
real linac ) 1036 mm
environment with

— Y

115.4 mm

e - beam

()
e 14 1 1o ar a1 (o |
L dida s N e i AV 4™ 2 s s e f {uis HOM coupler
One standard 9-cell TESLA accelerating structure
operated as a 1T-mode standing-wave cavity.
One 230 kW rf power coupler, an rf pick up antenna and
RF pick up & two Higher Order Mode antennas are assembled to each
LLRF cavity.
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