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General Remarks(1)
• The recommendation of the ITRP in 2004 to use SRF technology in 

favor of “warm” technology for the ILC gave a big boost to 
superconducting rf activities around the world, adding to existing 
activities on the implementation of the XFEL,SNS and developments 
for ERL’s ( Cornell, FZ Rossendorf, 4GLS, BESSY, Jlab) and 
Upgrades such as e.g. for CEBAF

• The enthusiasm for ILC has led to a large set of meetings, workshops 
and conferences, resulting among other things in an International 
Organization ( GDE) and a Baseline Conceptual Design (BCD) with 
heavy reliance on the TESLA/XFEL developments.

• However, also a recognition of the technological challenges has slowly 
set in and mainly the “newcomers” to SRF technology have realized, 
that many areas of R&D need to be explored, before as large a 
machine as the ILC can be realized
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General Remarks(2)
• SRF technology is a difficult technology and it is not very forgiving, if 

mistakes are being made.
• After all it involves many areas of physics and technology such as: Surface 

science, vacuum technology, metallurgy, chemistry,rf engineering, 
cryogenics, clean room technology, contamination control, cleaning 
technology,quality control…

• The ILC design goals are close to  the fundamental limit of the 
material properties ( in this case niobium) and this is the first proposed project 
to my knowledge, where the design goals only been achieved in a few rare 
cases have and a solid technological baseline has not yet been established

• Other projects such as ERL’s, Neutron  and Light sources, or Upgrades of 
existing machines such as the CEBAF Upgrade are more modest in their 
goals for cavity losses and gradients – the challenges here are in the areas of 
cw operation and management of high currents/ damping of higher order 
modes
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General Remarks(3)
• It is one thing to achieve good performance of cavities in a 

laboratory environment ( vertical or horizontal Dewar
tests, ILC goals are Eacc ~ 35 MV/m at a Q-value of Q ~ 8x 
109 at 2K) and another to consistantly and reliably produce 
in an production environment over several years app. 20 
km of cavity strings with the design parameters.

• The installation of the X-FEL at DESY starting next year 
with somewhat reduced requirements for the 
superconducting cavities, will be a good demonstration 
project to see the difficulties of the implementation of a 
very large scale SRF accelerator. 
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What are the challenges?
What are the limitations?
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Critical Magnetic Field
• Superconducting properties are lost, when the critical 

magnetic field of the superconducting material is reached
and the material “quenches”

• For niobium, this is a field of Hcrit~ 190 mT, which, in an 
optimal cavity design, can lead to accelerating gradients of
Eacc ~ 50 MV/m by a reduced Hp/Eacc –ratio (LL and RE 
shapes)

• Typically, “quench fields” are lower because of defects in
the material, even for high purity Nb

• Pre-selection of “defect-free”
material sheets is done by
eddy current or squid scanning
developed at DESY [W. Singer et al.]
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Field Emission
• Typically, superconducting multi-cell cavities are limited 

in surface electric fields to 50 MV/m < Epeak < 70 MV/m 
by the onset of field emission (FE)

• Higher surface fields have occasionally been established, 
more frequently in smaller assemblies.

• FE leads to an exponential increase in dark currents ( and 
X-radiation) and an exponential increase in cavity losses.

• FE is caused by contamination of the sensitive
superconducting surfaces

• Remedies are strict contamination control:
• Clean Processing and Assembly: Clean room, High pressure ultrapure 

water rinsing for extended periods of time is used
• Prevention of re-contamination: oil-free pumping systems, 

particulate-free hardware, clever procedures…
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Field dependence of Q-value: “Q-drop”
• Cavities made from high purity niobium (RRR>200) typically 

show a degradation of the Q-value at Eacc > 24 MV/m ( Hpeak > 
100 mT) in the absence of field emission

• “ In situ” baking at ~120 C for extended periods of time (> 12 
hrs) causes the disappearance of the “Q-drop”; baking is more 
effective on electropolished surfaces than on surfaces treated by
chemical polishing

• The physical effect causing this Q-degradation is not yet well 
understood, but here are indications that a re-distribution of the 
oxygen concentration in the penetration depth plays a role

• Temperature maps of cavities in superfluid helium have shown, 
that “ hot spots” are responsible for the “Q-drop” and models 
have been developed ( e.g. A. Gurevich) 
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“Q – drop”
Theoretical Dependence[A. Gurevich]
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Experimental
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G. Ciovati, Jlab
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Reproducibility and Reliability(1)
• This is mainly a concern for large projects such as the 

XFEL or the planned ILC
• The ambitious goals for ILC call for are a gradient of 

(35 MV/m + 5% ) and a Q-value of ~ 8 x 109 

• The huge data base/experience at DESY for the last decade
indicates, that the technology is not yet there to produce 
the above requirements, even though in a few cases the 
design goals have been achieved or exceeded.

• Within the ILC community there are plans for more R&D 
under way to understand and solve these problems, which 
seem to be connected to the large number ( > 50) of 
preparation steps: only a flawless execution gives the 
desired result

• A “streamlining” of procedures might improve the 
situation
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Reproducibility and Reliability(2)

Courtesy of L. Lilje, 
DESY
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Cost Reduction (specific for ILC)

• Alternative Material
large grain/single crystal vs polycrystalline
“streamlining” of procedures

• Optimization of cavity shape considering material 
limitations

TESLA shape vs Low Loss, Re-entrant shapes
reaching the magnetic field limit of niobium

• Increasing the real estate gradient 
superstructure
reduction in length, reduction in # of 
components



June 28, 2006 EPAC 2006, Edinburgh 14

Design Criteria for Superconducting 
Cavities
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Design Considerations(1)
• There is no universal design for a superconducting cavity
• Each design has to be tailored to its specific application
• One has to clarify, whether the cavity will used for

• High gradient or high current acceleration
• Needs to be optimized for maximum gradient or minimum cryogenic 

losses
• Will be used in a CW mode or a pulsed mode

• One also has to make a judgment about the achievability of 
the design goals
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Design Considerations(2)
For a “standard” elliptical cavity a design has to consider the
following parameters:
• Epeak and Hpeak at a given Eacc
• (R/Q) and G x (R/Q) : is measure of power dissipation
• Cell number N and kCC : field flatness aff = N2 / β kcc

aff ~ 5000 still manageable
• Side wall slope angle α : stability and cleaning
• Lorentz force detuning kL : material thickness, stiffeners?
• HOM damping: loss factors k║· and k┴· of dangerous modes

also modes between cavities
• Qext of input coupler: size of beam pipe, location, penetration
• Helium vessel: material (Nb55Ti,Ti,SS), stiffness, 

microphonics noise, mechanics of cold tuners
• Multipacting
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Cavity Design / Cell Shape
Full parametric model of the cavity in
terms of 7 meaningful geometrical
parameters:

Ellipse ratio at the equator (R=B/A)
ruled by mechanics, magnetic volume
Ellipse ratio at the iris (r=b/a)
Epeak
Side wall inclination (α) 
and position (d)
Epeak vs. Bpeak tradeoff and 
coupling k
Cavity iris radius Riris
coupling k, peak fields, (R/Q)
Cavity Length L
β
Cavity radius D
used for frequency tuning

[ C. Pagani et al.; “Design Criteria for Elliptical
Cavities” , 10th Workshop on RF
Superconductivity, Tsukuba, Japan (2001)]
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B-Factory
RHIC cooling

ERL/FEL

LL CEBAF-12 GeV

LL- ILC cavity

TESLA,              

HG CEBAF-12 GeV

Cavity examples

Ririsk ┴ , k ║
High Ibeam ↔

Low HOM impedance

Riris

Equator shape
(R/Q) ·G   Low cryogenic  losses

Riris

Iris, Equator shape

Epeak / Eacc                 

Bpeak / Eacc

Operation at       
high gradient

Improves whenRF-parameterCriteria

Riris = iris diameter , is a very “powerful variable” to trim the RF-
parameters of a cavity.

5. Geometry and Criteria for Cavity Design                      Cavities 
Design Considerations (courtesy of J. Sekutowicz)
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New Cavity Shapes
• In 2002 J. Sekutowicz optimized a cavity for the CEBAF 

Upgrade with respect to cryogenic losses (LL shape, CW 
operation)

• This cavity shape has been chosen for the CEBAF Upgrade
• In 2003 K. Saito proposed to increase the effectiveness of an 

accelerating structure by optimizing it with respect to the ratio 
of Hpeak/Eacc rather than to Epeak/Eacc , arguing that FE is not a 
fundamental limit, but Hcrit is.

• This can be accomplished by increasing the magnetic field 
volume of the cavity ( slope change0 and closing the iris.

• Unfortunately, the peak electric fields are increasing, the cell-
to-cell coupling is decreasing and the loss factors for HOM’s 
are going up.

• As a result, two new cavity shapes have been proposed and 
prototyped
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New Cavity Shapes for ILC(courtesy of J. Sekutowicz)

RE shape: Shemelin,
Padamsee, Geng, 
Nim A 496(2003), 1-
7
4496496(2003)1-
7.

496(2003)1-7.
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Update on Developments



June 28, 2006 EPAC 2006, Edinburgh 22

Cavities for High Gradient/Low Loss (1)
• The TESLA cavity design (1992) has been adopted as baseline for the 

ILC and is the “standard” for many ERL – applications such as the 
4GLS, Elbe, BESSY ERL, the Cornell ERL and the KEK planned 
ERL at KEK , with some slight modifications

• Gradients of >35 M V/m have been measured on several cavities and a 
cavity string/cryomodule will be assembled in the near future

• This cavity is available “off the shelf” for the ERL projects
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Cavities for High Gradient/Low Loss (2)
• The RE and LL/Ichiro cavity shapes have been prototyped as 

single cell and 9-cell cavities.
• Both at Cornell University and at KEK record performances 

have been achieved in the vicinity of Eacc = 50 MV/m ( 190 mT) 
on single cell cavities

• At KEK four 9-cell “Ichiro” cavities have been fabricated and 
testing has started.

• Gradients up to 30 MV/m have been reached, limited until now 
by multipacting in the beam pipes (K. Ko, SLAC)
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Cavities for High Gradient/Low Loss (3)
K. Saito,KEK
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Cavities for High Current(1)
• These cavities are designed for “moderate” gradients and 

Q – values: Eacc < 20 MV/m, Q ~ 8 x 109 at 2K
• The challenge here is the appropriate damping of HOM’s 

and absorption of the HOM power in room temperature 
loads

• BNL: 5-cell cavity for electron cooling experiment, large 
aperture, ferrite absorbers in beam line

• Cornell ERL: 8 coax HOM couplers on modified TESLA 
cavity + ferrite rings in beam pipe at 80K

• Jlab 1 MW ERL/FEL: six waveguides/cavity, RT absorber
• KEK ERL: radial line HOM absorbers on TESLA cavity
• MSU (Thesis): circular waveguide in TE11 – mode, all 

HOM’s propagate to RT load
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Cavities for High Current(2)
Cornell (R.Geng)BNL [see TUZBPA01]

Cavity is being processed and tested at  Jlab

Injector:5 cavities needed for ERL injector; 
prototype reached 21 MV/m; at 15 MV/m , 
Q ~ 1010
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Cavities for High Current(3)
Jlab 1 MW FEL[MOPCH182]

KEK ERL [K. Umemori, et. al., 
proceedings PAC’05]
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Cavities for High Current(4)

RF Pick-up 
integrated into 

FPC design

Cu plated Stainless 
steel operating in TE11

mode (circular 
waveguide)

Couples to all HOMs
1.3 GHz
Cavity

TOP VIEW

SIDE VIEW

Mechanically flexible 
to vacuum vessel

• Large aperture (thesis, D. Meidlinger)
• HOMs above cutoff in beam pipe fHOM ≥ 2fRF

• HOMs propagate to room temperature loads

• Ampere beam currents possible in multi-cell cavities
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Other Developments:large grain/single crystal 
niobium(1)
• Initially large grain and single crystal niobium cavities from CBMM 

material were manufactured and tested at Jlab with encouraging results
• Several niobium manufacturers (W.C.Heraeus, Ningxia) offer large 

grain material now and other labs (Cornell, DESY) have manufactured 
and tested single cell cavities.

• At DESY single cell cavities gave gradients in the vicinity of 40 
MV/m after horizontal EP.

• At Cornell a gradient of 30 MV/m was achieved after vertical EP
• At Jlab material from the 3 vendors was evaluated and gradients 

between 31 MV/m< Eacc < 34.5 MV/m were measured after BCP only
• At DESY a 9-cell cavity from large grain niobium has been accepted 

from ACCEL, two more cavities are in fabrication
• At Jlab two 9-cell TESLA cavities are being manufactured; anticipated 

completion and testing after BCP is in August/September
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Other Developments:large grain/single crystal 
niobium(2)
Test results from recent tests at Jlab
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Large Grain TESLA Cavity Shape SC, Chinese Nb
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Q - drop

Quench  29 MV/m

Quench @ 33.3 MV/m

Potential benefits:

• lower costs at comparable performance

• very smooth surfaces with bcp, no EP

• streamlining of procedures/QA

• less spread in data?
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Three 9-cell cavities from large grain Nb are in 
fabrication (Fa. ACCEL) ( courtesy of W. Singer)

The surface is more shiny after 
BCP. The steps at grain 
boundaries are more pronounced 
as in polycrystalline material

AC114
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High Gradient: Half-Reentrant Cavity

Positioned to 
avoid gas 
pockets

Acid/water can 
drain

Fill DrainFlip 180° Fill Drain
Trapped liquidTrapped gas

Magnetic field contoursElectric field contours

Thesis,  M. Meidlinger
has the potential to 
achieve the highest 
accelerating gradient in 
SRF cavities             
>50 MV/m

Half-Reentrant Reentrant

 TESLA Reentrant Half-Reentrant 
kc (%) 1.87 1.57 1.52 
Bp/Ea [mT/(MV/m)] 4.26 3.55 3.51 
Ep/Ea 2.0 2.26 2.40 
R/Q x G (Ω2) 30510 38350 39363 
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Superstructure: cost savings
Superstructure idea developed by J. 
Sekutowicz at DESY (Phys.Rev.STAB 
1993)
• Two 9-cell cavities are connected by a

larger diameter beam pipe of λ/2 length to
form a weakly- coupled 18-cell structure

• 2 HOM couplers at the interconnecting 
pipe and one at each cavity end provide 
sufficient HOM damping below BBU limit

• Each sub-unit has integrated He – vessel 
and tuner

• Major cost reduction due to shorter length 
and much less components (couplers)

• Concept successfully tested at DESY
• Development of sc joint between 

cavities underway
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SUMMARY
• SRF technology has developed to a point ,were “moderate”

performance levels  of  15 MV/m <Eacc <20 MV/m for CW 
application ( ERL, FEL…) are achievable

• For these devises – especially for higher currents – the 
main issues are sufficient HOM damping

• For high gradient applications such as the XFEL and ILC
the main issues are reliability and reproducibility of high 
performance, mainly limited by contamination control 
issues

• The use of large grain or single crystal niobium is 
potentially an alternative to present technology and in 
combination with a super-structure configuration could 
reduce the cost of a machine such as the ILC significantly
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