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Introduction

Charged particles in circular accelerators experience nonlin-
ear forces which Jimit the amplitudes of betatron oscillations.
Beyond the limit, the amplitudes grow until the particles are
lost at the beam pipe.

The issue of nonlinear forces has attracted increased atten-
tion with the construction of large synchrotrons and storage
rings. Sources of nonlinearities include systematic sextupole
fields to compensate the chromaticity. octupolar fields might be
necessary to damp collective instabilities, and unavoidable im-
perfections of the guide and focussing fields introduce additional
nonlinearities.

In hadron accelerators with superconducting magnets which
exhibit large systematic and nomsystematic nonlinear field er
rors, it becomes one of the most crucial bears dynamics issues.
This is especially true for low beam energies. Then the field of
the superconducting magnets is additionally distorted by eddy
current effects in the superconducting cable {persistent currents)
and the beam size is large. Moreover, injection and synchroniza-
tion procedures require additional aperture. This increases the
effective beam size.

The distortion of the motion by nonlinear fields interferes
with interaction among the particles, collective effects, inter-
action with residual gas in the beam pipe, the effect of power
supply ripples or radiation effects. The real accelerator s thus
guite a complicared object of study Instead of studying this
cowplex systent. 11 33 wore nseful tostart from a reduced model
Oue cousiders siugle charged particles whick

move under the influence of conservative linear and nonhnear

of the machine.

forces. These forces are perfectly periodic with respect to the
cicumference of the accelerator. In the context of this Hamilto-
nian mode] one introduces the dynamic aperture as the domatn
where transverse and longitudinal oscillations around a closed
reference trajectory near the center of the beam pipe are stable.
This motion 1s bound to closed surfaces (tori) in phase space.
It is called regular motion. Inherent to the nonlinear dynamics
is the existence of quasi-stable or chaotic motion for which the
tori are destroyed due to the nonlinear forces. Large chaotic do-
mains are likely 1o occur at large amplitudes. A particle injected
in chaotic large amplitude regions of phase space will be subject
to amplitude growth. Eventually, sometimes after guite a while
(up to 10° turns around the accelerator), the particle will reach
the domain where strong nonlinear forces cause a rapid loss of
the particle. The border between regular and chaotic motion is
therefore defined to be the dynamic aperture.

Our ultimate goal is to optimize the design of the accelerator
and its components such that nonlinearities do not limit the per-
formance. Tools are needed to determine the dynamic aperture.
Most important for determining the dynamic aperture are nu-
merical simulation procedures (tracking). The equation of mo
tion of the particles is integrated piecewice element by element
and the corresponding mapping once around the machine is it-
erated many times. Once the dynamic aperture as a function of
various machine parameters and operating conditions has been
found, one needs to understand the mechanism which produces
the stability limitations. This enables the designer to optimize

machine lattice and corrections schemes.

Since it is in general not possible to include in the simula-
tions all relevant effects which are present in the real machine,
the results need further interpretation. The understanding of
the interference between various nonlinear effects is greatly im-
proved by analvsis and simulation on simple nonlinear systems.
However. quantitative predictions for the real machines remain
very cumbersome and unreliable. In order to reduce the nn-
certainty. experimental knowledge of how the results of model
calenlations translate into the beamn behaviour in a real acceler-
ator needs to be gained. This has motivated tests of dynamic
aperture caleulations by machine experiments.

This article will proceed as follows. In the first section, the
inmiportant phenoniena of nonlinear dynamics as deseribed by
various perturbation techniques will be reviewed. The section
which follows describes simulation algorithias and interpreta
tion of the results. The report is closed by a review of nonlinear
dyvuamics machine experiments which have been carried out in

recent vears,

Description of Nonlinear Phenomena in Accelerators
There is as yet no theory available for an analytic calculation
of the dy

dures which enable machine desiguers to interpret the results of

amic eperture. There are however analytical proce-

observations aud simulations.

The concept of noalinear rescnances has proved to be a pow-
erful tool to interpret and to control nonlnear effects in accel-
erators. A nonlinear resonance oeonrs 1f i nonlinear foree has
a component which oscillates with the betatron frequency. This
is the case if the tunes (.. Q.. ¢, are rational numbers. The
motion in the vicinity of nonlinear resonances is potentially un-
stable, The de

optimized by avoiding or canceling strong resonant components

ign and the performance of accelerators 15 usually

of the nonlinear forces {driving terms).

Another important concept is nonlinear detuning. In any
nonlinear system, the tune depends on the oscillation amplitude.
This phenomenon of detuning is closely related to nonlirear in-
stability, On one hand, detuning tends to stabilize nonlinear res-
onances. On the othier hand, strong detuning induces instability
by causing close stabilized resonances to overlap in amplitude
space. This was first discovered by Chirikov 17 as a mechanisi
and criterion of chaotic motion.

The description of these phenomena accompagnies with the
attemp! to comprehend the nonlinear motion by means of per
turbation theory. There is a large variety of techniques which has
beeu introduced into our field. Many of them share a common
concept: one attempts to express the motion in a transformed
coordinate system where the solutions are Larmonic oscillations
(rotations in phase space) with amplitude dependent frequen-
cies. In the following, this concept is demonstrated with classi-
cal perturbation theory {2]. Explicit formulae will be given for
one degree of freedom only.

Classical Perturbation Theory. Consider how the constants J, &

of the linear betatron motion z(s) = \,/Z’.J,’i’(s)cos(‘l’(s) + &)
{(8(s) is the envelope function, ¥(s) is the betatron phase ad-
vance, both defined by the linear focussing system; s is the
pathlength around the closed orbit, the "time") are affected by
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nonlinear forces derived from a potential H. so that dJ/ds =
~0H/0V. d¥ds ~0H/OJ.

given in terms of polynowminals of the coordinates (mlipole ex-

H {the Hamiltonian) mav be
pansion)

nf2
H = Z“n’ = V) an(s) T2 im(F(s1+3)

(m ¢ {~n,—n-2.n}} Exploiting the fact that a,(s) and 3(s)
and ¥(s) — Q- 27s/C (Q is the hinear tune: C is the machine
circumference) are periodic in s, H is expanded in a Fourier
series (index ¢) in 2ms/C

H oo Y By 72 m @iz )

The canonical transformation oue is aiming for 1s H,J, & —
K.I,, where K depends only on the new amplitude (action)
variable I. In this case the action varies according to I' =
OK/O¢ = 0; thus I is a constant and the phase variable varies
according to ' = OK/0] = f(I) which results in the amplitude
dependent tune Q@ = Q + § ffup’ = @Q + f(I). Thus the solutions
are harmonic oscillations with an amplitude dependent tune.
)
mixed in old and new variables from which the transformation
equations are derived as J = 05/0% and ¢ = 0§/0] according
to the theory of canonical transformations. S relates the original

Such transformations may be generated by a function S(I,¢,s

and the transfornied potential or Hamiltonian by the Hamilton-
Jacobi equation
458/0s = K -~ H

We choose for S an expansion

S=I¢+4+ N

ny2 3t —gj2ma/C
S g I MmO -giame/ )

g
An approximate solution can ther be constructed by setting the

coeflicients .., of the gzenerating funection equal to
Crmg = = iy, Him Q) - g

wlich, when inserted in the Hamilton-Jacobl equation, cancel
the terms h,.., so that k.., = 0in first order according to the
general concept. Terms in the old Hamiltonian which depend
only on the action J (m = 0,7 = 0) cannot be included in the
transformation. They are the lowest order terms to be absorbed

in the new Hamiltonian. The tune Q(I) in the denominator
of 0ppmg contains amplitude corrections (detuning) which result
from expanding the terms ©, koo *? in terms of the new ac-
tion variable 7. Consider trajectories with various amplitudes.
Whenever the amplitude dependent tune Q(I) is close fo a res-
onance mQ — ¢ of order (m n). the coeflicients oy, would
become arbitrary large. This is prevented by absorbing the cor-
responding terms, the resonance driving terms (secular terms),
in the new Hamiltonian A as well. Expansion of the old action
alue in terms of the new action value introduces additional
higher order terms in A'. These may be removed by a second
transformation which creates terms of third and higher order.
A sequence of canonical transformations is formed this way. At
every step. new high order detuning and secular terms are cre-
ated whick may drive nonlinear resonances up to any high order
{even for quadratic nonlinearities). The procedure is known to
converge poorly and it 1s in general not possible to prove that
convergence occurs at all. One of the reasons for the difficulty in
the mathematical prove of the existence of closed tori is that the
amplitude dependent tune Q is modified throughout the proce-
dure as new detuning terms appear at each step. This requires

readjustment of the initial amplitudes iu order to fix the tunes

in order to prevent secularities developing in terms previously
considered nonsecular.

If strong Jow order secular ters driving a single resonance
mQ — ¢ = U occur early o in this procedure, they quite likely
dominate the dynamics aud mav cause a drastic reduction of
the stability limit. In this case one proceeds as follows. The
explicit "time” dependence of the truncated Hamiltonian can
the absorbed iato a new phase variable ¢ = @+ {(Q~—g¢/m)-27s/C
and the corresponding Hamiltonian G becomes independent of
time at the expense of an additional term A - I, A being the
distance of the linear tune from the resonance A = (Q — ¢/m).

Hence, the motion is integrable in this approximation.

G=Al- Z kn()OI“/: o z: iknm-}“rn“ cos{mo + & )

nmg !
4 n

If the detuning is small compared to the driving force, unstable
motion occurs for amplitudes bevond the separatrix, the contour
G(I.9) = Gy, do) contains the fixed points Iy, ¢o defined by
8G /oI = 8G /0o

to closed tor.

= (0. Inside the separatrix the motion 1s bound

If the detuning 1s strong compared to the driving force, the
particles will always get out of phase with the driving force and
the branches of the unstable orbits will close to a stabilized res-
onance 1siand.

Since the tune depends on the amplitude, the occurrence of
secular terms in the transformation depends on the actual ampli-
tude. Consequently, a dense web of resonant island chains covers
the nonlinear phase space. The variation of the amplitude along
these 1slands, the island width, depends on the square root of
the ratio of driving forces and detuning. The distance between
islands is inversly proportional to the detuning. Thus with in-
creasing detuning the island chains approach each other faster
than they shrink and they eventually overlap. A< mentioned
‘arlier, overlapping island chains are considered as a mechamsng
for chinotic behavionr. The ouset of wassive chios in acceleratos
phase space marks the dynamic aperture lit. The detuning 1¢
thus a central parameter counected to single particle stabiliity.

The build up of strong low order resonant harmonics and de-
tuning terms whicl considerably reduce the dynamic aperture,
can easily be avoided by appropriate lattice design and correc-
tion schemes. This is good practice in designing and operating
accelerators. For large hadron colliders the relevant question is
wliat is the stability limit for a well designed and optimized ma-
chine. From this consideration arises the desire to carry on the
perturbation series to high order to extract and analyze high
order resonance driving terms and detuning.

Perturbation Theory Based on Lie Transformations. The elass:-

cal procedure, turns out to be quite ineflective for calculating
higher order detuning and resonance driving forces. The main
reason is that the classical procedure is nonrecursive and there-
fore involves carrying out multiple integrals of increasing com-
plexity over the nonlinear fields around the accelerator lattice.
The method using Lie transforinations as developed by Horiand
Deprit[3] {for an application to accelerators see [4,) has proved to
he more effective. The hasic concept however is the same. The
system is to be transformed such that the Hamiltonian cortains
only secular and detuning terms.

The objective is to transform the system J, © with the Hamil-
tonian H(®,J,8) = Hy+ ¥, :—: H, {¢1s a formal parameter which
characterizes the strength of the nonlinear force) into a system
I, with a Hamiltonian K(p.J,8) = Ko+ Y. ‘n—",K,, which de-
pends only on the action variable, or more generally contains

only secular terms. This transformation is to be constructed by
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Poisson bracket operations or Lie generators L = ErE R

. L. which act upon the phase dece varlablm The operators

L may be expanded in the form L = 2L, They generate an

‘—”* n.
infinitesimal canonical transformation of a phase space variable
The corresponding finite transformation (J, ¢} =¥ — (I, ¢} is
. - — no,7
to be expanded in powers of € as well so that M = T, 5 M,

where A oM Liom. The following expression (1o be

compared with the Hamilton-Jacobi equation) relates K to H.

= MUH 4 M7 [ de MaL(e) o
0

Inserting the power expansion for H, K, M, L into this equation,
one obtains a recursive set of differential equations
n-1

™
SLyw K4 mM?

m=3i

(8/8s + [ He )L, = n{K, ~ H,]~ o H ]

In lowest order one obtains (Hy, = @ - J)

(8/6s ~Q-8/08)L, =
(8/8s —Q-8,68)L, =

(K, ~ Hy)

(}\'3 - Hz) *i](lf] + H])

(Q is the linear tune). This allows us to calculate recursively the
Lie generating functions L, order by order. Quite in analogy to
the classical procedure, the functions {8/ 8s+Q-8/9% L, may be
chosen to cancel all terms on the rhs of the equations excluding
K,. Then K, vanishes except for secular terms which cannot
be included in the transformation. The equation of motion are
integrable in the new system as long as only one secular term
has to be taken into account.

This recursive algorithin is very well suited {or analytic cal-
, the trans.

culation by computer to any high order. Morcover

formation M ™! is given explicitly in the new variables

that one can solve immediately for J and € in order 1o recon-

I, so

struct the tori in the original system. Tlis procedure ic used

in celestial mechancs. There are tools avalluble for accelerator
applications (see ref 4],

Normal Forms, This perturbationu theory can be applied to a de-
scription of nonlinear dynamics 1u terius of maps as well as to
a Hamiltonian description. In simulation procedures. nonhnear
maps which describe the propagation of particies once around
the accelerator are counstrucied on eack turn. It seems to be
natural 1o investigate the maps to analvse the tracking data
and to extract from the map the relevant parameters like tune
shifts which govern the dynamics. Since the complete map is
in general very complex and contains very high powers of the
coordinates, one usually deals with truncated maps.

A powerful way of analysing maps is the normal form proce-
dure [5.6 which is again based on the principle that the mapping
is to be expressed in a new coordinate system where it is reduced
to a rotation with an amplitude dependent tune. A very elegant
technique uses Lie operators!7]. Consider a mapping of a phase
space vector around the accelerator £is + C) = ]\I:E'(s) If this
form is inserted into the equation of motion d/ds = SVH
[ H) = H7 (5 is the symplectic form, H is the Hamiltonian) we
obtain a differential equation for the map dAM/ds = — M H with
the formal solution A exp(T f:“.f{) = exp(L) {T stands
for time ordered) which is called a Lie operator. Any map of
this form can be factorized into a rotation and a nonlinear part
8] M R exp(F).
¥ = exp(H ) by & Lie operator K is to be found so that the orig-
inal map is reduced to an amplitude dependent rotation Q(J)

A coordinate transformation generated

0= e'KReﬁeR
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Following the basic rules for operating with Lie operators (see

for example ref'8 ; one obtains

(1~ RY)R -

~ higher order termes

Q= Roel *

The goal is accomplished to lowest order if A is chosen such
that ~(1
expanded A and F in eigenfunctions i =

)R cancels the nonsecular terms in F. Having
A ._Jexplﬂbb of the
rotation operaior R.with Rk = (’xp{nrQl .
kym RTETT
see that we have to require

1@ 1s the linear

une) then A = = w7, and we
t then A F=x R Rt d

Lanrn

Kovr = o 111 — exp(—imiz -

mjQ;)

n)Q = nfeger. and kn, = 0 for
The remaining terms in F are tuneshift terms

for nonsecular terms (m
secular terms.
and resonance driving terms.

This concept has been developed into a recursive algorithm
which allows calculation of the elements of the generator K or
It has been applied to calculate tune shift and
nonlinear distortions of tori ("smear”) for the Superconducting
Super Collider[7;
modified formalism is the layout of tuneshift correction schemes
for the LEP Hadron Collider [10

Perturbation Theory and Dynamic Aperture. So far we may sum-

der by order.

Another application for accelerators using a

marize by saying that perturbation theory provides qualitative
understanding of nonlinear dynamics and supplies us with tools
to calculate the relevant parameters for the design of an acceler-
ator. Nothing has been said so far about the dynamic aperture.
Heuristic models have been proposed which give an estimate of
the dynamic aperture which is associated with the breakdown
of perturbation theory. For example, the dynamic aperture has

The tran:
4

iriable J oand the pew action

been defined as the limit I, with (27 07y, = 0.
formarion between the old action ve

variable J 1s accomplisiied by o second order canonieal 1ransfor
mation which interpolates across resonance islands '11 . lu an
other approach. the Hamilton-Jacobi equation is solved directly
by an 1terative procedure based on Newton’s method. Noncon-
vergence of the procedure is interpreted as the dvnanuc aperture
limit {12}
tions of the nonlinear equation of motion and subsequent inves-
tigation of linear stability ;131

Other procedures are based ou successive Linearisa-

There are examples for all these
methods which seem to indicate that they provide a reasonable
estimate for the dynamic aperture. However, there is as yet no
method considered reliable enough to replace numerical track-
mng.

Numerical Methods

The so called kick codes are the most used tracking codes.
They are conceptionally simple describing the motion by suc-
cessions of phase space rotations followed respectively by a non-
linear kick which depends on the particle position. Kick codes
are symplectic so that they describe a solution of Hamilton's
equation of motion. Due to the large number of turns needed
to make a reliable prediction of stability, kick codes turn out to
be very expensive tools for investigating the dynamic aperture
of future large hadron colliders.

Maps which carry only the essential information about of
the motion could be more effective. The mapping generated by
a kick codes includes extremely high powers of the coordinates to
be tracked. The calculation can only be speeded up by truncat-

ing the map at a given maximum order which is appropriate to
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the problem investigated. It is thus evident that deseribing the
motion by a map implies sericus approximations. On the other
Land. the kick procedurs is approximate too. since the action
of the noalinear forces is concentrated in a minimum number
of thin lens kicks, an approximation which the generation of 2
truncated map does not rely on. On the contrary, there is much
less restriction on the amount of information which can be taken
inte accournt ‘n building the map. The effort to iterate the map
remains the same.

A tzuncation procedure is provided by using Lie operators
to describe the motion through single elements. There are well
established rules to concatenate and factorize these propagators
which allow the map to be represented as a product of operators
I, exp :I),M [$ where the Lic generating function L is composed
of homogenious polynominals in the phase space variables of or-
der k. The product can be truncated at any order. It always will
provide a symplectic mapping. The procedure is implemented
in the computer code MARYLIE {9]. )

Mapping by Lie operators exp (L) =1+ L+ 1L?+ .. implies
an infinite series of iterations which is evaluated numerically
in MARYLIE by a Newton’s method.

has beer. made recently {14} by expressing the action of a Lie

Comnsiderable progress

operator by a number of kicks. This is accomplished by writing
the Lic generating functions which are usually represented as
L=

p U™ pT in the form

et P TI

Ly =Y Az - cos @i+ po - sin )

ke

A Lie operator of the form exp(| , f(azr + bp.)]) produces just
~8f/8p., Ap, = 0f/0x. The €, are
angles to be chosen appropriately to assure that one can solve
{for the coefficients A,

considerably speed un the evaluauon of Lie generated maps. a:

a generalized kick Ar =
The so called kick factorization may

](’(1‘1 {('Z QLE O TWo \"1('&11‘(“‘5 Uf {]‘('“Yi‘)lll.
Another wav to produce truncated maps is by using differen-

tial algebra'15 . The essence of this technique 1s that it propa-

gates partial derivatives [“”fﬂ'ﬁf’” up to any order n of a function
f{#) through & series of mathematical operations on f by ap-
plving differentiation rules such as (g - f' = ¢'f + f'g. Applied
to tracking algorithms. f is to be identified with a phase space
vector & which is propagated around the machine. It has the ini-
tial form f] T'o) = To with é?f,’(')f(, equal to the unit matrix, and
0"]6‘,/’8‘1"” = 0 forn > 1.

the coefficients of a Taylor expansion representation of the one

After one turn one obtains 8" /07y,

turn map. Unfortunately, this map is in general not symplec-
tic and svinplectification cannot be performed unambiguously.
Nouetheless, this new tool provides a powerful truncating mech-
anism, The resulting map can be easily evaluated.

From the many methods to determine the dynamic aperture,
we will select and discuss three examples.

The straightforward approach for determining the dynamic
aperture 1s long term tracking. Particles are tracked for many
turns. The initial amplitude is varied until the betatron oscilla-
tion. are stable for a large number (2 10° — 10°) of turns. This
procedure is very expensive (simulation of 10° turns in HERA
using the kick code RACETRACK [16) takes =~ 10%s for one ini-
tial condition on an IBM3090). It is therefore not well suited
for studying the dvnamic aperture as a function of many pa-
rameters like tunes, chromaticities, different statistical seeds of
magnet errors, tests of different correction schemes.etc. More
eflective methods are very desirable.

The early detection of chaotic motion can speed up consider

ably the process of determing the dynamic aperture. The expo-
nential divergence of two. initially very close trajectories is a cri-
terion for chaos [17). A measure for this divergence is the average
growth rate of the separation in phase space, the so called Lya-
punov exponent defined as ¢ = liny, ¢ imxy .. ,t In ‘f;}. Here d
is the separation of two vectors in phase space dy = [[AZ(N)||
and N measures the time in turns around the accelerator. This
perameter can be related to the eigenvalues AY of the N-turn
Jacobian Jy = OF{N)/97(0), obtained by linear expansion of
the fields about the trajectory under consideration. Choosing
ATy along the eigenvectors € of Jx results in

o= Maz{ limy_.« on} = Mex{ limn_x J%ln \)\kA)\?'}

Thus the Lyapunov exponent measures essentially the density
of unstable fixed points associated with nonlinear resonances
along the particle trajectory. For linear motion, ¢ is zero. For
regular motion where one expects linear divergence of d/do, on
- N)/N, approaching zero quickly. For chaotic

evolves as In(a ;
trajectories, ¢ is different from zero. Such methods have been
used to determine the dynamic aperture in the HERA proton
ring [18]. Stability of the motion can be predicted for ~ 10°--107
turns after 10 - 10% siilated turns. This saves a factor of
10 - 100 in computing time.

In the same spirit, stability is predicted for large times by
analysing the motion for shorter times by a method following
Nekhoroshev’s theoremn. Nekhoroshev’s theorem tells that per-
turbation theory is able to predict stability for a finite time which
increases exponentially with the size of the phase space domain
considered. On the basis of this theorem, the following principle
has been established [20]. Consider the deviation of the action
&J(t) from an approximate smooth torus observed over a time
T. If the maxitnum variation AJ within a domain J; << Q; is 6J
over a period T. an orbit which is confined for the same period
Tina smaller domain J = 2. % 5. will remain within Q; for
a titne of at least Min{J, — Jo17¢J - T. The approximate torus
necessary for this analysis is found by fitting numerical phase
space data from tracking to a generating function. Normal form
analysis of a one turn map might be another way of providing
approximate tori. The method has been applied to a model lat-
tice with sextupolar nonlinearities. Stability over up to 10° turns
has been predicted by this method|20 .

Exp

effects which have not been taken into account in the Hamilto-
nian model. The meaning of the dynamic aperture for a real
accelerator is therefore not obvious. Experimental tests of cal-
culations are necessary.

Resonant behaviour has been studied in many accelerators.
The performance has been improved considerably by the com-
pensation of resonance driving terms. The compensation of third
order resonances in the CERN-PS |21} is a typical example. In
almost every accelerator operating in fixed target mode, slow
resonant extraction has been controlled with high precision by
exciting nonlinear resonances on purpose and by adjusting the
tunes to be close 1o a nonlinear resonance (see for example [22]).
More recently, nonlinear phase space trajectories of electron and
proton beams in the presence of strong sextupole fields have been
observed directly by analysing digitized signals from two beam
position monitors. A small beam has been kicked transversly
and the beam position has been recorded subsequently for about
1000 successive turns. After taking into account filamentation



effects in the multiparticle beam. the measurements confirm well

the predictions [23,24,. One can summarize that resonant be-

haviour and the stability hinit near resonances in a real machine
can be reliably predicied qualitatively and quantitatively by an-
alvtical and numerical calculations.

Further experiments have been performed to measure the
short term dynanuc aperture in the case of strong nonlineari-
ties but for operating far from low order resonances. The dy-
namic aperture in presence of strong sextupole fields has been
measured 111 the TEVATRON as a part of the E778 machine
experiment 25 . The beam emittance was increased by many
small transverse kicks while the beam profile was monitored us.
ing wire scanners. The beam width. after increasing for a while,
reached some final value which was interpreted as the short term
dynamic aperture. The results obtained for different values of
the strength of the sextupoles was compared with a 500-turn
dynamic aperture from iracking. The experimental values are
always smaller than the predicted values. The discrepancy is
40% for low excitution of sextupoles and 20% for strong sex-
tupoles. In experiments performed at the CERN-SPS [26] dy-
namic aperture has been measured under similar conditions. A
small proton beam is kicked by a single kick. Beam loss is taken
as an indication that the edge of the beam reached the dynamic
aperture. The dynamic aperturc in the corresponding simulation
was defined as the border between regular and chaotic trajec-
tories determined by detection of a nonvanishing Lyapunov ex-
ponent.Measured and simulated dynamic apertures (=~ 17mm)
agree within a few millimetres. These experiments seem to in-
dicate that if the actual field errors in an accelerator are known,
dynamic aperture calculations do indeed predict with resonable
accuracy the amplitude limit for short term stability, for time
scales of the order of 16" turns or a few seconds in real time.

More experniinents have been rarried out to explere the valid-
¥ of dvnamie predictions for a larger thine seale. In the CERN
SPS expenment (26 diffusion induced by strong sextupolar nou
linearities has been investigated. The beam size is controlled by
scraping the beamn When the serapers are released. the beam
life time improves for a while until the beam is blown up by dif-
fusion processes. This diffusion is clearly related to the strength
of the sextupoles. In the corresponding long teru tracking caleu-
lation (up to 10° turns) no signs of diffusion have been detected.
To suppress the diffusion. amplitudes have to be reduced to at
least half the short terin dynamic aperture.

There are models which deseribe how diffusion is induced
by an interference of tune modulation and nonlinearities. Tune
modulation causes sidebands around stable resonance islands in
phase space. For low modulation frequency (induced for exam-
ple by power supply ripples) but large modulation depth. these
sidebands overlap and this then satisfies the Chirikov criterion
for chaos [27]. This mechanism can be investigated analvtically
in the (integrable} single resonance model. Small amplitude os-
cillation around the closed orbit associated with a stabilized res-
onance exposed to external tune modulation corresponds to the
motion of & driven pendulum. The analysis of this model reveals
a phase transition between regular and chaotic in the parameter
space of modulation depth and frequency. The validity of this
model has been explered in the Fermilab ET78 experiment [28].
The beam is kicked as a whole, populating a resonance island
generated by strong sextupoles and has a working point near the
resonance 5@, = 87. Whereas the coherent signal from the part
of the beam which is outside the istand decays quickly due to
detuning induced filamentation, the beam which is trapped in
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the island provides a persistent signal since all amplitudes inside
the island are on average the sawe. Slow decay of this persistent
signal is due to diffusion processes by which particles leak out off
the island. This has beeu stimulated in the E778 experiment by
tune modulation. Enhanced decay rates have been observed for
modulation parameters which correspond to the chaotic phase
in the pendulum model

Conclusion
There has been considerable progress in understanding the
impact of nonlinear phenomena in accelerators. New analvtic
and numerical methods have been developed and to be used to
determine. to analyze and 1o improve the dynamic aperture in
large hadron colliders.
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