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Review of Beam-Beam Interaction in Electron-Positron Circular Colliders

Kaoru Yokoya
National Laboratory for High Energy Physics, Tsukuba, Ibaraki 305, Japan.

1 Introduction

For the last few years theory of beam-beam interaction in
electron— positron storage rings has shown a remarkable progress
due to the demand of high luminosity B-factory. In particular,
problems related to asymmetric colliders have been studied inten-
sively as a new feature of this field. Recent studies have been sum-
marized in review talks by Keil in the preceeding conferences(1]
and in summaries of workshops by Gareyte[2] and Keil[3].

This paper summarizes the investigations mostly last and this
years. Those which were described in the preceeding reviews in
detail will appear only briefly in this report. The notation is not
fully defined but I believe it to be standard.

No general conclusion was attemnpted in this review.

2 Beam-Beam Limit in General

During the last few years analytic models of strong-strong inter-
action to reveal the physics of the beam-beam limit have been
developed. which was initiated by Hirata's work on the mapping
of the second moment {¢?), {zz') etc.[4] The theory has explained
various phenomena such as flip-flop qualitatively. Hirata[5,6] has
extended his theory to higher moments using Stratonovich (gen-
eralized Hermite) expansion. In the strong weak case he got
a good agreement with computer simulation, taking as high as
18-th moment. For strong-strong case, only 4-th moments were
included, due to a numerical problem, but the agreement with
simulation was still improved.

Tennyson[7] has developed a new method of computing the
beam-beam limit, which may be called self-consistent strong-
He assumes that (a) the final state is time-
independent and that (b) the time variation of the r. m .s. bunch
length o;(i = 1.2) of each beam is a function of oy and o, {and
other constant parameters) only, i.e., do;/dt = Fi(oy,0;). Then,

weak model.

by weak-strong simulation, he finds the weak bunch size Sy(0;) as
a function of the strong bunch size oy. The same procedure gives
S,(o1) by changing the role of strong and weak. Intersections of
the two curves on (&), ;) plane give the equilibrium bunch sizes
{Fig. 1). He proved that dSi/de; x dS,/doy < 1 is the necessary
and sufficient condition for the stability of the quilibrium point.
He claims that the beam-beam physics can be reduced to strong-
weak problem by this method and that strong-strong simulations
are not very powerful because of nummerical noises.

He tried round beams only.
heams can be treated by introducing four-dimensional space

In principle non-round

{Cz1, 041, 02, 042) but this will require even more computing time
thau strong-strong simulation. Extremely flat beams are nearly
one-dimensional and may be treated by this method if we can
ignore the energy flow from the horizontal degree of freedom.

It is not clear in his formalism whether or not the ‘stable’ so-
lutions found in this way are stable against coherent motions
such as dipole. It seems the assumption (b), based on which the
stability condition was proved, excludes such possibility. This
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assumption is much stronger than the Gaussian approximation
employed in most strong-strong simulation codes because it does
not contain terms involving z'.

Low Current: High Current:
Below Bifurcation Above Bifurcation
af= oz {p1))
1 Stable
Unstable
Stable
Stable
% = S(oi; {p2lf’

02

Fig.1. Beamsize function and equilibrium points[7].

3 Round and Flat Beams
In the case of equal rings, the luminosity is given by
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2r.3; tr)

r=oy/o; (1)
Apparently round beams have an advantage over flat by factor
of 2 because of (1 +r). In addition Krishnagopal and Siemann|8]
exerggerated that in the case of round beams the beam-beam
parameter
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does not depend on the longitudinal position s in spite of the
variation of 3 and o¢'s with s. (Normally, round beams mean
not only o, = ¢, but also 3, = 8,). When the bunch length o,
is considerably shorter than the beta function, the synchrotron-
betatron coupling is excited. Round beams can avoid (some part
of ) this coupling. Krishnagopal and Siemann[8] showed by com-
puter simulation that £,,, will be larger in the case of round
beams.
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Fig.2. Luminosity and &,,., vs. 3* at CESR[9].

Experiments of changing the betafunction were carried out at

CESR/9] (with flat beams). The bunch length was fixed constant.



It turned out, contrary to the first expectation, that By ~ o, was
the optimum for the luminosity as seen in Fig.2. As 3* increases,
&mazr becomes larger but the increase is less than linear. This re-
sult was explained by Krishnagopal and Siemann[10] by the fact
that the bunch length causes the modulation of its own betatron
ocsillation as well as relaxes the effect on the opposing beam due
to phase averaging. In computer simulations, therefore, it over-
estimates the modilation effects to include the shift of the colli-
sion point due to synchrotron oscillation with one thin-lens kick.
Taking into account these facts, Krishnagopal and Siemann[11]
again compared round and flat beams by strong-weak simula-
tions. After optimization of each case, they got £,,.-(R) ~ 0.10
and &oe(F) ~ 0.05. (In Fig.3 &,.,, is plotted against as/3* for
two different cases.)

(a)
10 2 (b)

008 (\ 210 =4 7
NV
LY

s
>
L4 \
002 004 e
l —— FLAL
000 v RN 002 -
vo (3] 0 3 2u vo ¢ [N T . ]

Bunch length /7 Beta* Bunch length / Beta”

Fig.3. £nar for round and flat beams[11].

Chin{12] has also compared round and flat beams for APIARY
rings by strong-strong simulation but obtained different result
Emax(R) ~ 0.035 and &£,,,.(F) ~ 0.04 with an interesting observa-
tion that the round beam has an equilibrium distribution sharply
cut off whereas the flat beam has a long vertical tail.

Hirata[13] made analytic comparison using a Gaussian model.
Under the assumption 3*(R) =
of the round beam, he found the maximum luminosity L{R) ~
1.4L(F) when the luminosity is limited by flip-flop bifurcation
and L(R) ~ L{F') when £ saturates without bifurcation. In bhoth
cases he found £,,.(R) ~ £ae{ F')/2. Actually, since the above
assumption is very difficult to achieve for round beams, this result
says the round beams cannot give higher luminosity than the flat

35(F), which is quite in favor

beams.

These results strongly contradict with each other. Tt should
be mentioned that the bunch-length effect, which is the key of
Krishnagopal and Siemann’s simulation, is not taken into account
in Hirata’s simple model. {The detail of Chin’s simulation is not
known to me.}) As is seen in Fig.3, when the bunch length is
short, the round beam does not have an advantage. Also, to be
fair, the huminosity limitation in Hirata’s model comes from the
strong-strong nature of the interaction which is not taken into
account in Krishnagopal and Siemann's.

It is impossible to give a definite conclusion at this moment.
In recent designs of asymmetric colliders, however, people tend
to adopt flat beams, admitting that the round beam cannot give
overwhelmingly higher luminosity which can pay for the consider-
able efforts to make the beam round. (An exception is Siemann’s
suggestion[14] that the round beam allows a long bunch which
can reduce the required rf voltage.) I am afraid that the round
beam issue might come to an end without conclusions of beam-
beam theory because of the practical need. We have not only to
wait for the round heam experiments at CESR but also to try
more simulations and analytic works.
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4 Energy Transparency

Since there is no e*e™ collider with asymmetric energies upto
now, it would be nice if we can resort to our experience in sym-
metric ones by imposing some conditions, called ‘energy trans-
parency conditions’ by somebody, such that an asymmetric col-
lider looks like a symmetric one.

It has been usual in designing asymmetric colliders to make
(1) the beam sizes and (2) beam-beam parameter £ same in
the two rings. Y. Chin[15] added two more items to the list,
namely (3) é(relative energy loss between collisions) and (4)
a,Q,/B8*(betatron phase modulation due to finite bunch length)
through try and errors of computer simulation for the APTARY
rings.

Krishnagopal and Siemann(16] replaced (4) with (5) fractional
part of tunes, (6) Q,, (7) 3" and (8) o,. They got these conditions
by perturbation treatments of Hamiltonian so as to make equal
the resonance structures and strengths of the two rings. As a
result, Chin’s condition (4) was split into three conditions. If we
demand all these conditions to be satisfied, the only parameter
which can compensate the energy inequality is the number of
particles per bunch; Nyy, = Nyvy,.

Tennyson(7] argues, by his self-consistent strong-weak method,
that symmetric machines have no obvious advantage over asym-
metric ones and the latter may have their own optimum. He
claims to have an example for which & # ¢, is an optimum.

The issue of the energy transparency seems to have hecome
obscure. Chin started with an optimization of the luminosity
and obtained the equality conditions for the particular set of the
machine parameters. Krishnagopal and Siemann's work is more
general but it is not clear whether the conditions are needed
for the lumonosity optimization. Computer simulations of wider
range of parameters are desired in order to sec if the equalities
make the optimum. Among the equalities, Chin’s condition (3)
has to be examined because it is expensive to get the same daping
rates in rings with same circumference but different energies and
also because this problem seems to be the simplest. It is not clear
whether Chin’s work insists the damping rates must be the same
or be just as large as possible.

5 Tail Distribution, Life Time

When a machine is well tuned, the luminosity limitation usually
comes from the life time due to the particle loss from the tail
of the (quasi-)equilibrium distribution. Since the particles in the
tail do not take part in the strong-strong dynamics, we can em-
ploy strong-weak picture to find the tail distribution after finding
the core (or by simply assuming a Gaussian core).

Chin[17] has developed a technique, which he calls renormaliza-
tion, to compute the distribution function. A simple application
of perturbation theory often causes infinity due to the resonance
denominator 1/(Q(I) — Q,.,) when integrated over the action .
He solved this problem by treating the average and the oscillating
parts separately and gave finite results.

Comprehensive studies have been done for the life time esti-
mation by Gerasimov and Dikansky[18,19,20]. They start with
the Fokker-Planck equation and show the (quasi-jequilibrium dis-
tribution can be written as Z exp(—¢/y + O(n)) in the limit of
n — 0, where 7 is proportional to the radiation excitation (‘weak
noise asymptotics’). They studied non-linear isolated resonances
m@Qu (L, I,) + nQy(1,, I,) = integer and pointed out the essential
difference between 1-dimension and > 2-dimension. In the case
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of 1-dim ¢ — ¢g = O(AI) (¢o is the Gaussian distribution and AT
is the resonance width) but, in the case of > 2-dim, ¢ — ¢ can
be the same order as ¢ due to the mechanism which they call
‘phase convection’. A particle initially at I, = I, = 0 may come
to the point marked with a circle {see Fig.4) slowly by radiation
diffusion and, then, it can go along the resonace tube much more
rapidly. As a result, ¢ is almost constant in the region II which
shows a long plateau if projected onto the I, axis. This explains
the energy flow from the horizontal to vertical degrees of freedom
in the case of flat beams.

They compared the theory with experimental results in VEPP-
4 and got qualitative agreements. The method is very promising
and we hope comparisons in more detail with computer simula-
tions and with scraper experiments.
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Fig.4. Contour of ¢(I,,1,)[20].

6 Coherent Beam-Beam Interaction

The latest review (or rather a ‘textbook’) was given by Hirata[21].

Dikansky and Pestrikov[22] and Simonov[23] have studied co-
herent phenomena (single bunch per beam). Various formulas are
summarized in these papers, including growth rates, stop-band
widths, multipole (>dipole) modes, synchro-beta resonances, ete.

The work that gave the strongest impact in the fleld of co-
herent interaction during the last year was presumably the one
Ly Hirata and Keil[24.25]. They studied the coherent intraction
between beams with arbitrary mumnbers of bunches, which has
bhecome important because of asymmetric colliders, using rigid
Gaussian model with linear approximations and numerical solu-
tions of matrix eigenvalue problem. Their main results can be
sunimarized as follows. (The ratio of the numbers of bunches is
n1/ny with ny and n, being relatively prime.)

e The sum resonances n,0)) +n, )y ~integer are the most dan-

gerous.

¢ The area of the unstable region in (Q,,Q2) plane is approxi-
mately proportional to y/n? + n2. Tab.1 shows the area of the
unstable region for some combinations of n; and n, for the
coherent beam-beam parameter Z; = Z; = 0.03. (Alexan-
drov and Pestrikov[26] have shown, in the case nq/n, = 1/n,
that the resonances overlap when n 1/16Z,=;, by using
a dispersion relation and a resonance approximation. Note
that the relation between = and the incoherent beam-beam
parameter £ is not clear so long as one empolys the rigid
Gaussian approximation. Hirata and Keil assume Z = £/2
and Alexandrov and Pestrikov = = ¢.) In order that the un-
stable region is less than 50%, the bunch number ratio must
be less than ~6.

¢ When the operating point is in the stopband of a sum reso-
nance, the beams separate and fall into a limiting cycle. See
Fig.5.

o It seems very hard to damp the instability by a feedback sys-
tem because a large gain and a large band width are required,
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Fig.5. Limiting cycle at a sum resonance[21].

It seems that this theory is almost eliminating the possiblity
of inexpensive B-factories which add a very small ring to a large
existing ring, if not many other advantages of equal-size rings[27].
The maximum possible ratio is hard to say (the above value need
not be considered seriously). In principle one may be able to find
a good operating point between numbers of stopbands. But in
order to convince oneself with the existence of such a point in a
large ratio collider, one has also to study carefully non-Gaussian
interaction, higher multipoles, etc.

Upto now the coherent beam-beam instability has not been
harmful for real operations of colliders except an example found
at DORIS II[28]. The stable coherent oscillation with small am-
plitudes has been used as a diagnostics tool of the beam: by mea-
suring the tune splitting AQ), between the 7- and - modes, one
can estimate the incoherent beam-beam parameter £. When ¢ is
small, the relation between them were theoretically found to be
AQr s = 1.338,, AQ,, = 1.24¢, (flat beams) and AQ, = 1.21¢
(round beams)[29]. An experiment was done by Koiso et a{30]
and the agreement was excellent especially for AQ, .. The com-
parison of AQ, . is limited by the accuracy of the luminosity
monitors but the results at CESR[31] also seem to confirm the
above relation.

Response Amplitude

Kicker Frequency

Fig.6. Hysterisis of the o-mode response.

An intersting phenomena of coherent oscillation with large am-
plitudes were observed by leiri and Hirata[32]. They excited the
oscillation by applying rf kicker with a slowly changing frequency.
The response amplitude showed a hysterisis behavior: it took dif-
ferent courses for increasing and decreasing frequencies (Fig.6).



This is a well-known characteristic of non-lincar damped oscilla-
tors. The skelton curve {dashed) gives the tune-amplitude rela-
tion Q(I) if the system consists of two rigid particles. Our system
is ensembles of particles, however, and we only know that the in-
tersection of the skelton and the horizontal axis, AQ,, gives £.
What we desire is a theory. With it, we should be able to extract
a: least one more parameter which will tell us about the particle
distribution function in the core, ¢.g., how it is close to Gaussian

7 Simulation Techniques

Recent status of the computer simulations is sumumarized by
Siemann{33’ who says that our simulations can reproduce many
of the experimental features of beam-beam interaction {indeed
the CESR luminosity has been explained to ~ 10% accuracy 34])
but the predictive power is still poor. Here, we only mention
some works after his review.

To find the beam life time due to the particle loss from the tail
as long as a fow minutes to hours. we need a tremendous com-
puting time (typically 10" o 10" particle-turns). Irwin{35! pro-
posed a fine technique of tracking particles emphasising the tail.
The whole process after finding the core distribution consists of
several steps each of which has an amplitude boundary inereasing
from step to step. In each step he starts with the initial distei-
bution determined by the data accumulated in the previous step
and track the particles for about ene damping time, recording
the coordinates of particles going across the boundary outwards
for the next step. By this way he s able wo track more particles
i the tail.

It is very intersting to sec whether this algonithm can repro-
duce the ‘phase convection” studied by Gerasimov and Dikansh

This is not trivial because Irwin had to assame that the partd
cles must forget their initial conditions during cach step so that
the correlation is lost. But the phase convection is a rapid and

correlated phenomena.
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Fig.7. Solving Poisson equation using FFT.

Kikutani[3¢] has developed & code in which the beam-beam
force is computed using Fourier trausformation without assuming
the Gaussian distribution. The method is shown in Fig.7 (1-
First, Fourier transform the distribution
function (solid line at top-left}, multiply Fourier kernel of the
Columomb potential (hottom-left) and transform back to the real
space. If one naively applies FFT, the ghost charges (dotted line),
which inevitably come from the periodicity of FT, exert forces
onto the real charge. In Kikutani's code the range of FFT is
twice as large as the real charge arca (top-right) with some price
of the computing time, and a truncated Coulomb kernel (bottom
right) is used so that the ghost charges do not contribute to the

dim for illustration].

field in the real charge region.
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He was able to confirm the relation AQ, , = 1.33&, which can
only be explained only with the non-Gaussian nature. The com-
puting time is still tolerable but the noise problem has not yet
been studied fully.

Hirata, Moshammer and Ruggiero[37] claimed that, when one
considers the synchrotron oscillation effects on the beam-beam
force, he must also take into account the corresponding en
ergy change in order to make the force symplectic in the six-
dimensional phase space. Although the effect does not seens to
be large because the longitidinal emittance is usually much larger
than the transverse, one can include these effects for cafty as the
proposed algorithm to compute the counterpart does not require
much computing time.

There has been an arguement as to how o take into account the
emittarce change due to the optics change by the linear part of
the beam-beam interaction 33.38]. The last paper on this issue is
by Hirata and Ruggiero[39] who state that the standard technique
of generating radiation can automatically reproduce the correct
emittance if the betatron phase advances between the IP and
the hending magnets are almost uniformly distributed, which 1«
normally satisfied in large rings.

{Channel[40] has reported a new method of tracking the mo
ments of the distribution function but, unfortunately, 1t has not
been available to me))

8 Crab Crossing

The so-called crab crossing[41] 1% a new topie of the heam-hea
interaction. It is proposed in order to make the crossing angle
large without loosing the luminosity and without exeiting the
syuchro-betatron resonances. If everything is perfect, the inter
action with a finite crossing

angle plus the crab tilt iz the same
as that of head-on. The problem is, therefore. the tolerances of
the various parameters. An estimation for a r-charm factory is
presented in[42.

Piwinski[43] made a strong-weak simulation for round beams
and considered the cavity power and phase errors {stavic), the
error in the betatron phase advance and the effect of the bunch
length with respect to the crab-cavity wave-length. He found the
tolerances for the emittance blow-up to be small ave not tight,
The tolerances for tail particles are a little tighter but still easily
manageable.

Koiso and Oide[44] considered the tolerances for the errors flue-
tuating from turn to turn using strong-strong simulations, They
found, if the four cavities have the same errors, the tolerances are
not a problem at all. When the four cavities are independent, the
required tolerances look tight but do not make problems if the
four cavities are fed by the same klystron.

We can say through these studies that the crab crossing is not
a problem for the beam-beam interaction.
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