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DISRUPTION LIMITATION TO THE BEAM-BEAM TUNE SHIFT IN CIRCULAR COLLIDERS
S. V. Milton and L. Z. Rivkin
Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland

ABSTRACT

The beam-beam tune shift parameter, &£, has been an
important input in the initial design of ete” circular colliders.
Its use should be questioned in light of two facts. The first is the
large, and as vet unexplained, differences in the maximum tune
shifts observed in various existing machines (variations from
0.02-0.06). The second is the tendency observed in more
recent designs of simultaneously specifying a large & and a
a¢/f* ratio close to or even possibly less than 1. Experimental
evidence suggests that a more suitable design paramgeter is the
amplitude disrup:ion parameter defined as D' = ((4né)" + DY) .
where @ = dnéog/B" is the usual disruption parameter. This
observation is further checked with a particle tracking
simulation. Designs using a D" of 0.6 - 0.8 seem appropriate.

INTRODUCTION

Machine luminosity (per bunch) has risen substantially
since the first colliding beam experiments were performed.
Much of this increase can be attributed to decreases in the value
of %, the beam envelepe function at the collision point.
However, as B' continues to decrease its value can become
comparable to the bunch length, ¢ This is particularly true in
the vertical direction, i.e. the case of flat beams, which is the
focus of this paper. There are indications from lhcoryl,
expcrimcm?‘, and simulation® which suggest that the ratio /8"
= { has a dramatic influence or. colliding beam performance. In
particular, these authors have found that beam enlargement from
the beam-beam interaction (BBI) as a function of current tends
1o be larger, i.e. a lower peak value of & the larger the {. This
behavior has been attributed to beam-beam driven synchro-
betatron resonances. As { becomes large (i.e. 2 1) &€ may no
longer be a good design parameter. A new parameter useful for
initial design purposes in this new regime should be sought out.

Definitions

As a particle travels through the oncoming beam it not
only receives an angular kick, but also, if it has a non-zero
longitudinal displacement, s, from the [P at the time of passage
through the opposing bunch, it will receive a net transverse
displacement as viewed at the 1P (fig. 1).
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Figure 1: Two views of the instantaneous beam-beam kick.

Consider only the vertical direction and assume for the moment
that the BB kick is instantaneous and is applied as the particle
passes the longitudinal center of the opposing bunch. In the
linear regime, the BBI changes the particle’s angle by Ay'/y’ =
ﬂ;/f) = 74n§y, where ﬁ; in the vertical beta function at the 1P, ’g'y
15 the vertical tuneshift parameter, and fy is the vertical focal
length of the beam-beam lens given by
1 2Nr,

5 yolo,+0,)
N is the number of particles in the opposing bunch, 7, is the
classical radius of the electron, 7 is the relativistic factor of the

particle, and 0 and 0, are the transverse bunch sizes of the
opposing beam at the IP (horizontal and vertical respectively).
The change in the particle's displacement (also viewed at the IP)
is Ayly = —slfy = »47c§y0':/ﬁ;. Here we have assumed the particle
to have an average longitudinal displacement o, (Note: Beta
varies quadratically from the IP. In the above approxima n{)};
this will reduce both Ay'/y" and Ay/y by = 1/(1 + (05//3;) T
Since this is the same for both ratios it has been ignored.) The
term 4né will be referred 1o as the angular disruption, although
elsewhere the angular disruption has been defined in a slightly
different way“. D= Azfz = dnfo/B" has been called the
disruption”; we will continue with this usage. (2 is used
generically for either transverse direction.)

Another disruption parameter can be constructed. This will
be called the amplitude disruption parameter and will be defined
as

Dt = \/(Az/z)z +(Azfz)? = \/('u? + (4né)?
0" is represcntative of the average change in a particle's
fractional amplitude, Aafa, as it passes through the opposing
bunch (fig. 1). In the limit of { —> 0, D* ~4n&, and in the
limit ¢ >> 1, @" ~D. Anticipating the results, if D s a
constant at peak colliding beam performance (i.e. independent
of §), 4n& and D would behave as shown in Fig. 2.
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Figure 2: The behavior of D and 4n€ for a constant D°.
References 1-3 have already shown the importance of { on
the resulting colliding beam performance. The question now
remains: is there evidence proving that any one of these 3
disruption quantities is a censtant in storage rings independent
of § and, therefore, a useful design tool?
EXISTING EXPERIMENTAL EVIDENCE

CESR Data

A 3 day machine study was performed at the Cornell eter
storage ring CESR in an attempt to determine the ,6'; value which
would allow CESR to achieve peak luminosity?, Four different
values were tried: 5.0 cm, 3.0 cm, 2.0 cm, and 1.5 ¢cm. The
horizontal 8% was not varied, nor was the bunch length which
remained constant at 2.2 cm. Also, since CESR typically runs
with nonzero horizontal dispersion at the IP of approximately
0.7 m, all four test lattices were designed with horizontal 7]'
within the range 0.65 — 0.70 m. With each latlice an attempt
was made to optimize the machine luminosity over a period of
10-20 hours. Optimization was based on the peak luminosity
obtained without exceeding beam lifetime or detector
background limitations.

Results from this study showing the maximum achieved
values of the 3 disruption parameters are shown in Fig. 3. Peak
usable luminosity at the { = 1.5 point was limited by
excessively large singles rates into one of the two experimental
detectors rather than being limited by beam lifetime as were t%e

other lattices. The reason for this, given in ref. 2, was that N
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became very large due to the small ﬁ; thus creating a vertical
aperture limit near the IP. This difference in criteria may be a
possible explanation for the slightly lower D" value @ ¢ = 1.5.

It is difficult to draw definite conclusions from such a
limited set of data; however, comparison with Fig. 2 suggest

that 0% is the most likely candidate for being a limiting
constant representative of colliding flat-beam performance.
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Figure 3: Results from the CESR machine study.

Results From Other Machines

A compilation has also been made of peak machine
performance in various machines®. These results are shown in
table 1 and are plotted in Fig. 4. Comparison of the data is
complicated for a number of reasons. For example, operating
conditions at each machine are differen:, and each machine
throughout it colliding beam history has experienced its own
peculiar set of difficulties limiting its performance in one way
or another, These have not been taken into account, nor have
other effects such as the influence of the machine tune and
perturbation of 7 by the beam-beam lens.

Table 1
Machine 4 4nk D N
CESR 1.13 0.25 0.28 0.38
SPEAR 0.45 0.63 0.28 0.69
PEP 0.39 0.63 0.2° 0.67
VEPP-4 0.32 0.75 0.24 0.79

VEPP-2M (off)  0.40 0.63 0.25 0.68

VEPP-2M (on)  0.625 0.56 0.35 0.67
PETRA 0.17 0.30 0.051 0.31
DORIS II 0.20 0.31 0.063  0.32
ACO 0.075 0.38 0.028 0.38
DXCT 0.035 0.52 0.018 (.52
{on) Wiggler on; (off) Wiggler off
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Figure 4: Results from various machines.

These differences aside, one can make the following
observations: 1) The results seem to be separated into two
groups defined by the line at { = 0.25. The cause of this
separation is not known, nor will any speculation be put forth.
t should be noted however that both the ACO and DCI
machines, both of which fall on the low { side of the line, were

operated on the coupling resonance with approximately round
beams and thus may not compare well with the other flat beam
machines. 2) Within each group there is a tendency for 47 and
D* to decrease and D to increase as § increases. Most of the
variation in D" is seen to be due to the variation of 4né. 3) D
appears 1o saturate at a level of = 0.3 as { becomes large, 4)
Two extra notes about the CESR data should be made. CESR is
the only machine to purposely operate with a very large non-
zero dispersion. This fact may make the CESR data "special”
compared to other flat beam machines. Also, the values shown
for CESR in Fig. 4 are higher than the equivalent points in Fig.
3. This is because Fig. 4 represents the “"best” CESR
performance and not just the optimum after tuning for a short
period of time as in a machine study.

Again it is difficult to draw conclusions from the limited
data. As was seen in the previous studies (ref.1-3), the data does
confirm that the 3 quantities are dependent in some way on §.

PRELIMINARY EXPLORATIONS BY SIMULATION

A simulation of the beam-beam effect in storage rings was
used to further explore how variations of § affect colliding beam
performance. The code used draws much of its structure from the
skeleton of one written for strong-strong (S/8) simulation by
Juckson’, LIND. Besides being modified to a weak-strong (W/S)
version, other modifications and diagnostics have been added as
new information on the correct methods of simulating the BBI
become available. Most notably, the BB kick has been divided
longitudinally into many smaller kicks in order 1o more closely
mimic the actual distributed nature of the particle trajectory
through the opposing beam. Also, all beam distributions,
synchrotron radiation, damping, and RF are done at a machine
symmetry point in order to rteduce spurious unphysical
correlations,

The transport around one full machine turn has been divided
up as follows. Beam initialization is done at the machine
symmetry point 1/2 way through the BB kick. #The particles
are propagated through 1/2 the BB kick. Particles are then
transported by linear R matrix 1/2 way around the machine to
another machine symmetry point. At this point radiation
excitation, damping and RF is applied to the particle
coordinates. Transport back to the IP is done using a "mirror
symmetric” R matrix (i.e. in 1-dim Ry; <—> Ry3). Particles are
propagated through 1/2 the BB kick. Midway though the BB
kick all the bunch characteristics are calculated % This process
between the ®'s is repeated for many machine turns. No
machine errors are considered; however, it has been shown that
these have the effect of dramatically increasing the BBI induced
beam blowup®. Linear lattice coupling has also not been
included.

The W/S simulation is made to imitate some S/S
characteristics by repeatedly updating the beam sizes used for
the BB kick calculation to equal those of the weak beam's. This
is done by tracking 512 particles through a fixed strong beam
field for a total of /5T, turns, where 7 is the transverse damping
time and T, is the revolution pericd. During this time the
average RMS sizes of the weak beam is computed. At the end of
this period the "strong beam sizes” are updated with the
computed weak beam RMS sizes. (This, of course, presupposes
gaussian bunches, which is known to not be entirely correct
during colliding beam conditions.) The particles are tracked for
a total of 3-4 7. At the end of this period all backup files,
histograms, etc. are accumulated and written to disk for latter
analysis.

Only symmetric colliders were considered, the reference
machine being 5.3 GeV x 5.3 GeV. Typical transverse damping
times for these machines are on the order of 10,000 turns.
Because of computer limitations, damping rates used in the
simulations were 10 times greater, i.e. = 1,000 turns. Variation



of the damping rates have already been shown by simulation to
have an effect on the strength of the BB driven resonances”. In
particular, the larger the damping rate the less effective a
resonance is in enlarging the beam size.

relimj esults

Two tune plane locations were explored. One was chosen
to be near the normal CESR operating point (@, = 0.72, Qy =
0.675, Q5 = 0.03) in order to allow preliminary comparison t
the available experimental data. A second low tune operatin
point was chosen at the tunes Oy = 0.07, @y = 0.07, and (g
0.06. Its choice was based on the fact that this region of the
tne plane is relatively resonance free. The exact choice of the
tunes was made by doing a rough tune scan near these regions
looking for a minimum in the blowup of the beam thus avoiding
major resonances. Only the fractional part of the tunes are
considered.

A different optimization criteria than used in the CESR
experiment was required with the simulation. In the CESR
experiment, lifetimes and backgrounds were used as the criteria
for limiting the current and thus the peak luminosity. Computer
limitations prohibited determination of the beam lifetimes. The
following procedure was used instead. A set of conditions
specifying some § were chosen. The current was then raised
vt} both 47€ and D sawrated. Plots of the saturated 0%, b, and
4né versus § were then made.

Fig. 5 shows the simulation results at the CESR operating
point.  As in the machine study experimen:, ¢ was scanned by
varying [3; while holding 8% = 1.1 mand 1y = 0.7 m. The
gualitative similarity of these simulated curves with thosc of
Fig. 2 is very apparent. The resulting curves also look similar
to those seen in the experiment {fig. 3); however, the
simulation overestimates the values by = 2-4. A large fraction
of this differenca is probably due 1o the different criteria used
during optimizing (i.e. saturation vs. particle loss). In the
simulation, saturation of 4né and D occur at currents of = 2
times higher than those reached in the experiment. The
simulation is also inherently prone to achieving higher final
values since, in the limit of its own approximations, il is a
perfect machine. The same can not be said for the real machine.
A third reason for the difference is due to the higher damping
rates used n the simulation,
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Figure 5: Simulated disruption parameters at the CESR

operaling point.

Further simulations were done at the sccond low tune
operating point.  After an initial run similar to the CESR tune
point scan (i.e. vary 8} but not 83) which yielded plots similar
o Fig. 5, a more controlled set of initial conditions was
explored. Fig. 6 shows the results of such a series of runs. In
this set of scans the initialized tune shift parameters in each
plane were made equal to one another by varying simultancously
B with ﬁ; This maintains the shape of the beam "footprint” in
the tune plane. Dispersion at the IP was set to zero. Saturated
values of 4n and D were then found. A further, essentially
identical, scan was performed, but rather than varying the §s, o
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was varied. The results of this scan was very similar 1o that of
Fig. 6.

The data in Fig. 6 deviates more from Fig, 2 than do the
data in Fig. 5. Most notable is the peculiar dip seen at { = 0.7.
This is not understoed at this time. It could be due to some
complex phenomena (ref. 1 Krishnagopal and Siemann) or
something much simpler such as a large population of particles
in the tails of the distribution significantly effecting the RMS
size calculations. These have not yet been fully checked.
However, as a design tool and not a comprehensive theory, the
gross characteristics of the curves resemble those of Fig. 2 in
which case D" is still the favored choice.
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Figure 6: Simulated distuption parameters at the low tune
operaling point.
SUMMARY

Presently available evidence suggests that 7" rather than &
or D is the proper choice for a parameter useful in designing
future machines. The findings do not, however, prove this,
Comparison between many different machines is difficult at best
and simulation has only been able to give qualitative
agreement.  The results of the simulation also lead one (o
believe that the picture is much more complex if one looks
closer.  Of course more simulations must be done, a more
comprehensive theory formed, and many more controlled
experiments performed. Until then we believe use of D" rather
than & during the design phase of ete™ colliders should be
strongly considered. A variation of this has already been
applied in a recent design effort!®. A conservative number for
‘D based on past machine performance is in the range 0.6 — (.8,
This is what one may expect of future colliders.
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