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Abstract

Two-dimensional effects are investigated for the Laser Wakefield
Accelerator  (LWA) Concept1'2'3'5. The nonlinear regime is
emphasized”®*1%!" " A fully three-dimensional and nonlinear fluid
equation is derived. Using computer simulations, we find the nonlinear,
1-D theory to be a good guide for calculating the acceleration field even
for narrow driving pulses. The possibility for relativistic optical guiding
is also considered in light of the recent work by Sprangle ez al't,

Introduction

In the laser wakefield accelerator concept a short intense laser pulse
of length ~me/ @y is sent through a plasma to excite a plasma wave
wake. A trailing bunch of electrons is accelerated by "surfing" on the
wake. This concept was first proposed by Tajima and Dawson! and was
subsequently studied using computer simulations by Sullivan and God-
frey? and Mori’. The necessary laser technology was not available at
that time so an alternative concept called the plasma beat wave accelera-
tor was proposed?. However, beginning with the linear analysis of
Sprangle et al.3 there has been a renewed interest in the LWA owing to
recent advances in taser technology®.

Most of the recent research on the LWA has been concerned with
1-D nonlinear effects” 391011 There are three reasons for considering
the nonlinear regime. First, nonlinear drivers lead to an increase in the
wake’s phase velocity, thereby increasing the dephasing length for the
accelerated particles. Second, nonlinear plasma waves lead to an
increase in the wake’s wavelength, enabling the use of longer laser
pulses for a given plasma density, or the use of higher density plasmas
(hence higher accelerating gradients) for a given pulse length’ . Third, it
is necessary for the drivers to be relativistically self—focused'™!>! (opti-
cally guided) so that wakes can be excited over many Rayleigh lengths.
When a light pulse self-focuses in plasma, its radius reduces to a size on
the order of a collisionless skin depth ¢/ @, . For this spot size the value

ek
= :0 is greater than unity when the self-focusing power threshold
me
)
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(P > 20 — GW) is exceeded. Therefore the laser amplitude is typi-
w2
P

cally nonlinear.

These nonlinear analyses have been limited to one dimension.
However, since the laser spot size is in general on the order ofac/wy,
then transverse derivatives can no longer be neglected. A two-
dimensional analysis is therefore required. In this paper we will use
particle-in-cell computer simulations in order to examine the LWA in the
nonlinear, two-dimensional regime. We first derive a fully nonlinear
three-dimensional fluid equations'”'ls_ We reduce this to the one-
dimensional limit and discuss some important consequences for self-
focusing deduced from the 1-D equations by Sprangle e al'! We then
present two-dimensional simulations which show qualitative agreement
with these conclusions for spot sizes as narrow as 2 ¢/ @ .

Nonlinear Fluid Equations

In this section we outline the derivation of a single equation for the
fluid momentum . We start from Maxwell’s equations, the continuity
equation and the relativistic Euler’s equations for a cold plasma. By sub-
stituting Faraday’s law into Euler’s equation we obtain
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where ¥ = V% (B— —) is defined as the vorticity and A is the vec-
c

tor potential. The importance of eq. (5) is that it implies V=0 forever
if it vanishes at t=0 over all space.

To derive the nonlinear equation for P we substitute Ampere’s law
into the curl of V:
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An expression for St can be obtained by differentiating Euler’s equa-

tion:
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Finally, rcplacingTby —e NPy and using Gauss’ law in eq. (2) gives
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This nonlinear equation for only the fluid momentam completely
describes the evolution of the plasma since all the other fields can be

-

derived from
1-D Limit

We assume that § varies in only the % direction and that it is a
function of the single variable [ = x~ct. We assume v, =c which is
. . [0} . .
equivalent to assuming — > 1. The x component of eq. {4) reduces
P
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where Y:} = 1+ - - : and p, is normalized to mc.
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From eq. (3) we find v—p, = 1+6 = N where ¢ is normalized o
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P and N to the ion density 1, . Eq.{5) has been solved analytically
e

and numerically by various authors. Berezhiani and Murusidze® have

shown analytically that for square shaped driving pulses the maximum

value of 1+¢ is ~ '{‘2 and the maximum vlaue of E, is ~7y . For

. . g
gaussian shaped pulses, we find E, ~ —~ . These results can be found
in ref. 7. Results from 1-D computer simulations also agree with these
scaling laws.

In the 1-D limit the transverse component of P is due solely to the
driving pulse and it is described by the transverse part of eq. (4).
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If :l\i EX =1 ({linear theory) the phase velocity of light in plasma is
n, 7 )
Wy , . N 1
ve = ¢/ (1~ ~—;~ %, The phase velocity is reduced when — —
[} g

becomes less than unity. Wavefronts self-focus in plasma because
-_Ii L is typically smaller at those positions where P, is largest.
nO

It was thought that the entire portion of a light pulse which
exceeded the self-focusing power threshold would be optically guided,
since y and N individually respond on ™! (laser) time scales, How-

. . N _
ever, Sprangle et al. pointed out that the ratic — responds on o, !
07

i les. This is seen by noting thar — + = —

time scales. This is seen by noting that ey T+o

described by eq. (5). Consequently, they concluded that it is not possible
to optically guide (self-guide) laser pulses in the LWA because the
pulses are only mc/wm, in length. Their analysis was essentially one-

and 1+ ¢ is

. . . N .
dimensional. For narrow laser pulses the quantity — will no longer

be equal to -- . The impornance of the difference is discussed in the

next section.

Computer Simulations

In this section we present 2-D PIC simulation results. The simula-

tion code WAVE was used. The laser pulses are injected from the left-

hand boundary with a frequency % = 10. The light is polarized in

the z-direction (out of the simulation plane) with a transverse field profile

Ty _ . .
cos® - L and a longitudinal pulse width mc/ o, . All lengths are in
< Yo

mcﬁ)p

units of ¢/, and fields are normalized to

We begin by examining 2-D effects on the plasma wake. In figs.
la, b, and ¢, we plot the longitudinal electric field vs. position for
vo = ==, 10 and 4 respectively. The amplitude of the driving pulse was
v 5C . ~ . . . .
<222 4 gnd its field is plotted in fig. 1d. The numerical results given
c

in ref. 7 predict @ maximum value of 1.8 for E,. We find reasonable
agreement in fig. la where E, is nearly 1.6. It should be noted that
better agreement is obtained when longer system sizes are used. In these
simulations the system was only 15 ¢/, long. As the driver’s width is
reduced, it is seen in fig. 1 that E, is only slightly reduced. Therefore,
even when the driver’s width approaches ¢/, the 1-D predictions are
still a good guide for determining the accelerating field strength. This is
a significant result because the transverse derivatives in eq. (4) can no
longer be neglected.

We next consider the tendency of the driving beam to self-focus
when E s polarized in the translationally invarian} direction. For this
_(DL N
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polarization nonlinear term in eq. (4) is simply

N
et al. argued that for yo»c/0p, —— =
N ngy 149
—-~ therefore responds on 0);1 time scale. We performed 1-D simula-
0oy
tions for which the incident laser had a rise time of .5 @™'. The laser
then maintained its peak amplitude for the duration of the simulation.

and that the quantity

N1} .
The quantity — — was carefully monitored. The results are summar-

N,

. o . . )
ized in fig. 2. The ratio E)_ was 5, 10 and 20 for the simulations shown

in figs. 2a, b and c respectively. The x axis in fig. 2¢ is normalized to

£ rather than ¢/ @, . The results show that, although “i begins to
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respond after a single laser cycle, it takes ~ @yt = — ) to reach its
‘Yl -

asympiotic value. We note that even when the plasma wave gets large

_— . . N 1 .
enough for a significant nonlinear frequency shift, — — still responds
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on a time scale of the linear plasma frequency. This is important because
. . . . n Y
in the nonlinear LWA concept the driver pulse is = é long.

Therefore, if y is large a substantial fraction (1 — - ) of the driving
Y.

pulse is initially optically guided.

In fig. 3 we plot from 2-D simulations for which the driver’s
(o]

pulse length was mc/w,. The simulation had y,=10 and 4 and
Y,

~% =4, We find that initially along the axis of the laser ~_Ij«
c oY
behaves as it did in the 1-D simulation. However, after wpt =1 it
becomes considerably smaller because of the transverse blow out of the
plasma electrons. This would seem to indicate that narrow nonlinear

LWA pulses may be more easily guided.
Finally, we compared __l to
oY 1+¢

yo =4, simulation. In fig. 3¢ and d we plot :N— and ¢ vs. y atan x
Iy

for the narrow beam,

position within the driving pulse. We find that the relative phases of

N . . . .
— and I+_¢ are in agreement, but their amplitudes are not. This
neY



(a)
1,40

0.54

DEN/GAM

0.4¢ | |
0.00  0.37 0.73 1.2
X ap !

130

(b)

DEN/GAM

[

.09 I l I
p.G0 0.37 0.73

1107}
4,40 I

DEN/GAM
N
-
L]

0.37 0.73
X 4D
Figure 2

- ‘ N
indicates that the 1-D arguments which equated — to

oy 1+
correct qualitative behavior, but a more rigorous 2-D analysis is neces-
sary for narrow (y, ~ 1) driving pulses.

give the

Summary

In this paper we have presented preliminary results from 2-D simu-
lations. These simulations were done to study the nonlinear, LWA con-
cept for laser pulses with ¢/ @, spot sizes. We found that the 1-D non-
linear theory gives reasonably accurate estimates of the accelerating
field. We also found qualitative agreement between the conclusions of
Sprangle et al.'! and the 2-D simulation results. We have not performed
short pulse simulations over many Rayleigh lengths for large values of
©/ w, . This is an arca for future work. Lastly, we note that experiments
are bemg planned jointly between UCLA and LLNL in the USA to test
both wakefield generation and relativistic optical guiding. This laseris a
10TW 1 um in laser with a pulse width of 1 ps.

We acknowledge useful conversations with J.M, Dawson and P.
Sprangle. Work supported by DOE contract DE-AS03-83-ER40120 and
DOE grant DE-FG03-87-ER13572.
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