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Wake Fields between two Parallel Resistive Plates 
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Abstract The wake field generated by a point-like particle 
travelling parallel to two infinite metallic plates with finite re- 
sistivity, is calculated. 
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1 Introduction 

Intense electron bunches are known to produce destabilizing 
wake fields when passing through discontinuous or resistive 
structures. An example is provided by the CLIC transfer 
structure’ which is designed to extract 29GIIz RF power from 
the passage of a train of bunches containing each about 10’” 
electrons’. At present, this structure is a rectangular waveguide 
with periodic loading 3.2 mm away from the beam. Wake fields 
will be generated both by the periodic structure and by the re- 
sistivity of the vertical walls of 4mm aperture. In this paper, 
we consider the passage of a point like charge between paral- 
lel metallic walls with infinite extent and finite resistivity. The 
impedances per unit length are obtained by solving Maxwell’s 
equation in the f-domain. Thereby we follow closely the mathe- 
matical method used by Morton, Neil and Se&e? for the case 
of a resistive pipe. Through a Fourier transform, the wake fields 
are computed under the form of a series expansion for small and 
large distance z behind the source particle. The interpolating 
regime is given by a real double integral and is exhibited for 
both exciting and test particles on axis. Conclusions are drawn 
for the CLIC transfer structure. 
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Figure 1: Geometry of the two plates 

ones gets on the surfaces. for the p = 0 static case, 

E$;,,,(q,y = La, k) = 
e sinh(a(A f a)), 

4xzco sinh(2cYa) (4) 

with 
a+- (5) 

and ji the unit vector in the y-direction. For the moving charge, 
the electric field gives rise to a magnetic field through 

B(“) = r/3 x EL;;,,, (6) c 

In the limit *I ---f 03. one gets 

B(“)(q,y = ia,k) 7 -& 
sinh(q(A & cr)) . 

sinh(2qn) x’ (7) 
0 

2 Impedance calculation 

We consider the geometry of two parallel metallic plates with 
resistivity n. As depicted in Fig.1, the two plates are separated 
by 2a along the y-axis. The point-like source particle has charge 
e and is travelling parallel to the plates along the z-axis with 
a y-offset value A. We directly consider the case of an ultra- 
relativistic particle p = u/c N 1. It produces an electromagnetic 
field (E,,B,) which can be split in two parts 

We can now turn to the calculation of the wake field (E,B). Its 
Fourier transform obeys the homogeneous Maxwell’s equations 

V.E = 0 (8) 
0.B = 0 (9) 

(E,,B,) = (E(‘),B(‘)) + (E,B) (1) 

where (Et’), B(O)) is the electromagnetic field in the case of per- 
fectly conducting plates, K = co, and (E,B) is the wake field. 
It is easy to show that (E,B) obeys the source free Maxwell’s 
equations with a metallic current 

V x E = ikcB (10) 

V x B = (pen - ik/c)E (11) 

Of course, one must set n = 0 in the vacuum region between 
the plates (-u 5 y 5 a). Using (10) to evaluate B in term of E, 
(9) is fulfilled, and Eqs.(S, 11) become 

V.E = 0 (12) 

($ -K’)E = 0 (13) 

j =nE (2) 

Its dependance on the source particle comes in only from the 
boundary conditions which state that (E+E(‘l)ll and (B +B(‘)) 
are continuous at y = +a, since the surface current is zero. Since 
El:’ and By’ are zero at the metallic surfaces, our first task is 

to calculate B[/) on them. One way to do this is to use the 
Lorentz invariance of Maxwell’s equations in the case of infinite 
conductivity. First one considers the electrostatic problem where 
the charge is at rest and then the fields are Lorentz transformed. 
Defining the Fourier transformation of a field @ by 

with 
KZ = q2 - ikcpon (14) 

As already mentionned, the solution E of these equations must 
be such that E,,(y) and (B + B(‘)),,(y) are continuous at the 
boundaries y = &a. Using (lo), the continuity of the normal 

component of B follows from that of E/l. Note that Bs’ is the 
only source of inhomogeneity and thus is similar to a drive term 
in a homogeneous differential equation. Lengthy but straight- 
forward linear algebra leads to the following solution for the 
z-component of the electric field between the plates : 

0(x, y, * - act) = 
II 

dqdk ~(q,Y,k)eiqZeit(E-BC’) (3) E,(q, y, k) = E+,, 8” + E-,, emqy (-a 5 Y 2 a) (15) 



with 

E f,r = &q(q’ -- K’){cosh(qA)[(K cosh(qa) + q sinh(qa)) 
(k*(K sinh(qa) + q cosh(qa)) + q(q* - K2) cosh(qa))]-’ 

f sinh(qA)[(K sinh(qa) + q cosh(qa)) 
(k2(K cosh(qa) + q sinh(qa)) + q(q2 - K*) sinh(qa))]-‘} 

(16) 
K is defined as the solution of (14) with a positive real part. 

The force acting on a test particle with charge e’ is given by 
the Laplace formula 

F = e’(E + v x B) (17) 

For a relativistic particle such that Y = c i and using (10) the 
impedances (i.e. the Fourier transforms of the wake forces) de- 
pend only on the longitudinal components E*,, as follows : 

F(q, Y, k)/‘e’ = [ :i;k ] E+,,eq”~+ [ q ) E-,,emqv (18) 

3 The Longitudinal Wake Potential 

In this section, we calculate the longitudinal component of the 
wake potential II;il. We give its asymptotic form for small and 
large distance (z ct) of the test charge behind the source, as well 
as a real integral which provides the interpolating brhaviour. 

The longitudinal wake potential per unit length is given by4 

WII(GY,C) = --$/m~mdqjm~mdk I;,(q,y,k)e’“2e’k’ (19) 

The calculation of this double integral from the expression of 
F,(q,y, /c) as given by (la), is described elsewhere5. As expected, 
ahead of the relativistic source particle one obtains a vanishing 
wake WI, = 0. For (z - ct) > 0, the results are as follows. 

The case (.z - ct) =: 0 

One finds the following expression for the longitudinal wake 

7; 
W,(z,y,z ~ ct = 0) .I ~ 

1 t cosh(2lL) cos(2v+) 

16cou2 jcosh(2u) i COS(~V+))~ 
(20) 

where we have introduced the dimensionless variables 
7Tz 

u 
=4a (21) 

x(A f y) 
v* = ~ 

4a (22) 

In particular, the loss factor per meter for a particle on axis is 

k, = IV,, (z = o, y = o, z - ct = o) = & (23) 

The case (2 - ct) < 0 

The long range behaviour Introducing the characteristic 
length 

x = (p(qc) -’ (24) 

of the order of 10-r’ m for metals, the asymptotic expression of 
WII is reached when ]z -ct > (a2X)t13. The I, y dependance can 
be expressed as power series’. For z = 0 one gets 

W,,(O,tJ=,z-ct) = -.A- 4~a~~,--ct,-3;:(l+~:-~“1)+o(~~) 
(25) 

Thus, the long range on-axis longitudinal wake field is 

W,(z - ct) = ---& (26) 

It decays like 1s -- c~J-~/‘: as in the case of a pipe3. 
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Figure 2: The longitudinal wake function f,(w) 

Figure 3: The longitudinal wake function fi (w). The large w 
asymptotic regime is in dotted line 

The short range bchaviour For the small (z cr) asymp- 
totic regime, a series expansion for Wi!(z - ct) can be derived: 

Q(-’ - cl) =- s j-cl, 
c& I’, 1 [ 12 n;;3i2)k (27) 

where 

Ck ~ (- 2)3k I‘((3k -. 1)!2) 
\h r(3k + 1) / 

= dt tk+rcoshk -l(t) 

o sinhkfl (t) (28) 

As expected, immediately behind the exciting charge (2 ~ ct + 
O-), the wake potential is positive and, from 

and (20)) one gets the well-known relation 

CV,,(z-ct+O-)=2k, (30) 

The interpolating regime Although it is valid over the 
whole (z - ct)-range, the series in (27) is slowly converging and 
could not be used to see the onset of the asymptotic long range 
behaviour of Wll(z - ct) given by (26). The interpolating regime 
between the short and long range asymptotic behaviours is ex- 
hibited by writing the longitudinal wake potential lV~(z - ct), 
for the on axis particle case z = y = A = 0, as a real two- 
dimensional integral. Introducing the dimensionless variable 

one gets 

Q(” - ct) = 2 f]l(W) (32) 
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where the dimensionless function f,/(w) is such that fll(0) = 
7rITz /S, and is given by 

f,i(W) = ~Joadt~/:duusi~~~:Ose (33) 

with 

i 

2:3 
6 = -$u + l)t coth(t) w) (34) 

The two-dimensional integration can be numerically performed. 
The function fill is shown in Figs.2,3. For u‘ < 15, it is calcu- 
lated from (27), with 64 terms in the series, and for 15 < UJ < 40, 
from the integral in (33). One sees that the the asymptotic 
regime occurs for zu > 30, after one oscillation through the hor- 
izontal axis in the region of positive Wll. 

4 The Transverse Wake Potential 

The transverse wake potential per unit length is defined4 by 

\v,(~,~,<) = $/_rdq /-rdk F,(g>~,~)e’~“e’~~ (35) 

It is related to the longitudinal wake through Panofsky-Wenzel 
theorem 

a(,-,q‘RIL(Z,Y,t - ct) = -vIq(z,Y,z - ct) (36) 

We use this relation to derive the long range behaviour as well 
as the integral form of the transverse potential WI from the 
corresponding expressions, given by (25), (32) and (33), of the 
longitudinal potential U’l. 

In the long range asymptotic regime 1.~ - ctj > (~z’X)“~, one 
gets for z = 0, 

W,(O,y,z -ct) = 0 (37) 

and, to first order in ?/ and A, 

W,(O, Y, z - ct) = i $qz - et -I’* (y + 2 A) (38) 

By symmetry, the transverse wake fields vanish when both the 
source and test particles are on axis. In this case, the interesting 
quantity is the gradient of the transverse potential. One finds 

a,w,(Z - ct) = -d,W,(z - ct) = & 
r 

$? lz - et]-‘/2 (39) 

forz=y=A=O. 

These gradients can also be obtained, over the whole (z - ct)- 
range, under an integral form. The calculation proceeds in the 
same way than for Wll(z - ct), and leads to 

a,w,(Z - ct) = -&Wz(z - ct) = 2r;3y$l,3 fL(W) (40) 

where the dimensionless fi (w) is given by 

f_(w) = -5) “lt;;I;;l“” ~mduU3c;~-;~~;;J4’ 

(41) 
with 0 = u*(t coth(t) w) 2/3. fi(w) is drawn in Fig.4. One can 
see that the asymptotic regime is reached for w 2 18. 
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Figure 4: The transverse wake function fi(w). The large w 
asymptotic regime is in dotted line 

5 Conclusion 

The wake fields are calculated for a highly relativistic point-like 
charge between two metallic (finite conductivity K) plates. As 
well known, the longitudinal wake experienced by the charge it- 
self, (20), has half the strength of the wake behind the charge. 
Away from the exciting charge there is an intermediate region 
where the wakes could be given only numerically (Figs.2,3,4). 
Even further behind, at distances larger than 4.10-3azi3 m, 
where a is half the distance between the plates (in meter), simple 
asymptotic expressions could be derived (26, 38). In this region, 
the longitudinal wake is proportional to u-l K-“* I~-ctl-~/* and 
the transverse wake proportional to a-s &-I/’ IZ - ctl-‘I* (1.z - ct~ 
is the distance behind the exciting charge). This is the same 
asymptotic behaviour of the wakes as for a charge travelling in 
a metallic pipe. 

In case of Gaussian bunches with r.m.s. length o,, one can 
use the electric field given in (15,161 but with e replaced by 
e.exp(-k*az/2). Using the same approximations as in Section 
3, the resulting wake fields are identical to the one derived by 
Piwinski”. 

In order to illustrate the effect of resistive wall wakes, we 
take the example of the CLIC transfer structure. The aper- 
ture between copper plates is 2a = 4 mm and a bunch of lOI* 
electrons as an r.m.s. length 0, = lrrzm. Then the inte- 
grated wake forces, called loss factors, are k, = 0.27 V/pCm 
and k, = 490. V/PC m*, The power loss of one bunch is 35 MW. 
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