1145
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BENDING MAGNETSIN A RACETRACK MICROTRON.
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Two Racetrack microtrons being built at the Eindhoven Uni-
versity of Technology will be equipped with low-field sectors in the
bending magnets for improving vertical focusing. Calrulations
performed use hard-edge field approrimations and linear malrix
theory, Results of these caleulations will be given. More realistic
fields include intevacting fringe fields at all edges. The sectors will
be constructed in such a way, that all orbits are both isochronous
and closed. For the optimum shape of the sectors, we use a model
Jor approximating the three-dimensional ficld from the two dimen-
sional magnet-shape for arbitrary sector geometry

Introduction

In the accelerator laboratory at the Eindhoven University of
Technology, two Racetrack microtrons are designed ' and will be
built, suitable for a peak current of 100 A. At these high cur-
rents, space charge effects? can uot be neglected anymore. To
maintain a stable bunch, extra focusing forces have to be pro-
vided. Frohlich® proposed a three-sector magnet configuration,
with alternating high and low field regions. In this magnet con-
figuration, edge focusing between the sectors is used to improve
the focusing strengths, Figure 1 shows a schematic drawing of
the proposed Ridge-Valley-Plateau (RVP) configuration. Using

.

a hard-edge approximation, it is shown from geometrical consid
erations *, that the focusing properties are determined by two
parameters: the valley angle § and the relative depth a=B,/Bs
with B, the magnetic induction in the valley and By the induction
in both plateau and ridge. Using this hard-edge description, it

out

Fig.1 Schematic drawing of the RVP-configuration.

turns out to be possible to design a valley shape that satisfies two
Besides

important requirements: isochronism and closed orbits
these two, we have to meet the requirement of both horizontal
and vertical stability. Because we deal with realistic magnetic
fields, including fringe fields, we investigated the fringe fields, us-
ing 2-D magnetic field calculations. It turns out to be possible
to describe the fringe fields with an analytical function. This de
scription allows us to use the hard-edge theory for the realistic
fields. As a check, the analytically calculated magnet configura-
tion can be used in 3-1) magnetic field calculations.

To check the requirement of stability, numerical orbit calcu-
lations have to be performed. It is to be expected that the three
requirements will give a selected range of possible a, § combina-
tions. From this a valley shape will be chosen and the magnets
will be manufactured.

Isochronism

In order to accelerate the electron bunches, the synchronous
particle must have the same phase with respect to the cavity
voltage. This condition is called isochvonism. In the hard-edge
approximation the orbit length s, in the n'® orhit is given by:

Snm= 20L 4 sp + 8.+ 50) ()

with T the drift length (i.e. space between the two bending mag-
nets), s, the path length in the plateau. s, the path length in
the valley en s, the length in the ridge. In this hard-edge ap-
proximation, the particle travels the angle 20 in the plateau, § in
the valley and 7 — 26 — § in the ridge. Setting Bp=p/e with B
the magnetic fleld, p the curvature, e the electron charge and p
the momentium, we gel an isochronism relation for so, the path
length of the first orbit and a relation that describes the path
length difference A s=s,-5,1 between two successive orbits, For
an arbitrary shaped valley with & a function of the energy, we
have:
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with ng and h integers. In these formulac v is the usual relativistic
factor, Bo the magnetic induction in the plateau and ridge. and
B, the induction in the vallev. From equation (2) and {3) we can
derive a recurrence relation for &, for {the n** wrbit as a function
of the (fixed) values for By, a and A, The solution of this relation
is given by:
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&g 1s the valley angle in the first orbit at an relativistic energy
. In (8) & is called the critical valley angle. The value of
angle ¢ for a triangular shaped vallev, as proposed by Fréhlich,
is obtained by setting 6,=&,-;. From (5) it is seen, that the
shape of the valley in this hard-edge approximation depends on
the sign of é..
and harmonic number h=1, 4. changes sign for By/Avy=0.0458.
When the relative depth a changes from a<t1 to a>1, the sign
of é. changes also, so that the isochronism relations remain the
same for both cases high-low-high and low-high-low field. From
(5) we can distinguish three different types of vallev shapes: Tvpe
T1is: & increases with increasing kinetic energy, type 11 is the type
with & being constant and type Il is: & decreases as a function

Choosing an accelerator frequency of 1.3 Glz

of the kinetic energy. In figure 2 ¢ these three types are shown.
Using the hard-edge approximation it is possikle to derive a
relationship between the valley angle & and the relative depth of
the valley from geometrical considerations?, so that the particles
are bent 180% in the RVP-magnets. Setting § constant at every
energy and using the geometrical relations we can calculate tle
position of the points S; and Sy in figure 1. In figure 2% the val-
ley shapes are presented. belonging to the three shape types 1, 11
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Fig.2® Valley angle § as a function of the kinetic energy T for the
vallcy shape types 11 and 111,

.8 g
. . Type 1
8 -~ Type 1L
Type 1
7
< 4
-
24 I~
0 — :
0 2 [ 8

4
X {m]}

Fig.2> Valley shapes covresponding to the £-curves in figure 2.
and 111 in figure 22 Type [ describes a valley with ahmost parallel
boundaries. The shape of a type 1T valley is perfectly triangular,
while the type [l-shape is a crossed triangle. The disadvantage
of a type I-valley is that edge-focusing is only available at higher
energies, while type [ doesn’t provide sufficient focusing. So the
only valley shape that will be investigated more in detail now 1s
type T with a constant valley angle &,

Stability
At this stage we calculated a valley shape, that fulfills the con
ditions of isochronism and closed orbits. In order to study the
relative motion, with respect to the orbit of a central particle, a
first order matrix theory for position and divergence deviations

is used. In this theory the trace of the matrix M determines

the matrix M that describes the relative motion. Therefore the
trace for both horizontal and vertical movement is calculated. In
figure 3 the resulting stability region for a particle at 5 MeV is
dashed. It turns out that the stability region will be larger for
higher energies, so the stability region is smallest at the lowest
energy. To design the shape of the valley we have to choose the
microtron parameters Bo, a and é in such a way, that equation
(&) is satisfied and that the combination 4, a is inside the stability
region. Doing so vields the combination ars 0.40 and & <20°.

Magnetic field calculations

To perform orbit calculations in a real magnetic field with
fringe fields, we first have to calculate the three dimensional field
in the RVP-magnet. Since there is no symmetry to reduce the
3-D shape to a 2-D one, we have to use cross sections to calcu-
late the magnetic field. This cross section of the RVP-magnet
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Fig.4 Schematic drawing of the upper half of a cross section of
the RVP-magnet and the magnetic field in the median plane.

is shown in figure 4. We used the computer code POISSON® to
perform these magnetic field calculations. From the results we
will set up a field model. Measurements have to he performed to
check the validity of the used model. Besides, the calculated val-
ley can be used as an input for 3-D magnetic field calculations. In
order to derive a model field we investigated the effect of a rect-
angular valley on the magnetic field in the median plane. This
valley is characterized by its depth and width. The POISSON

100 : : :
80
— 60
-]
L%
=
© 40
20 - "
/ (/
0 = o
0.8 1.0

Fig.3 Stability vegion as a function of the valley angle & and rel-
alive depth a.

whether the relative motion of a particle is stable or not. Sta
bility only occurs for [Tr(M)]< 2. where Tr(M) is the trace of
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Fig.5 Contours with constant relative depth a as a function of
the width and the depth of the valley. Width and depth are scaled
with respect to the gap.

calculations give the minimum magnetic induction By, and the
magnetic induction Be in the homogeneous part of the field. The
effect of the dimensions of the valley are visible in the relative
depth a=B.in/Bo. Figure 5 shows contours with constant rela-
tive depth at different combinations of the depth and width of
the valley. Now we postulate® that the magnetic field in the val-



ley can be regarded as a mixture of two fringe fields. From curve
fitting it appears that the exponential function exp[-a (z + Az)?)
where % is the coordinate in the fringe field, fits rather well with
a root mean square of about 1072, The mechanical pole bound-
ary is at x=0 and Az &= 3 cm. Because of its simplicity we use
only one parameter a to describe the fringe field. The value of a
depends on the dimensions and the position of the coil. Setting
fi(x) the fringe field furction:

file) = S (©)

with B{oo) the induction far away from the pole boundary and
b the width of the valley, the mix-function F reads:

F(z) = filz) + folz) = filz) folz) (7

Because of symmetry in x=1b we write fi(x)=f(b-x). Fitting
of the mix-function F to the calculated magnetic field profiles,
vields a value for o with a root mean square of about 10-2. From
curve fitting it appears that « depends also on de depth of the
valley. Inserting the depth dependence of e in the mix-function F
and calculating the minimum magnetic induction in the median
plane gives a very good agreement between the model field and

the field calculated with POISSON.

Fringe Fields

To describe the effect of a fringe field, Enge” introduced a
SCOFF-field {Sharp CutOff Fringing Field) and an EFF-field
{Extended Fringing Field). In our case, the EFF.-field is de
scribed by the above mentioned exponential function. The posi-
tion of the effective field boundary EFB in figure € is given hy
JBscoprds=[Bgrpds. Using the ahove mentioned exponential
function that describes the fringe field, we caleulated the EFB:
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For our confignuration with a gap of .05 m. a typical value for « s
300 m~2. This yields an EFB & 0.025 m. Enge showed that in the
harizontal plane there is no change in focusing strength. although
the path length in the SCOFF-field differs from the path length
in the EFF-field. The order of magnitude is about 107* m for
@=300 m~? After one revolution, the path difference between
EFF and SCOFF-orbit has become about 107% m. The phase
shift with respect to the cavity voltage is about 5% In order to
keep the orbits isochronous in the SCOFF -field, the drift length
must be shortened.
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Fig.6 Calculated and fitted fringe field function. s is the coordi-

nate r scaled with respect to the gap.

Summarizing, we can describe the EFF-field by a SCOFF-
field, introducing the effective field boundary EI'B given by (8),
so that the isochronism relations (2) and (3) can still be used,
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although the drift length must change. Besides, the geometrical
relations, which describe the shape of the valley, can also be used.
Contrary to the horizontal plane, in the vertical plane there is a
decrease of focusing strength. Although the bending angle and
the path length are almost the same, the stability region showed
in figure 3 will change.

Due to the fringe field, the particle is bent more in the plateau
over a distance EFB. This implies the bending angle in the valley
is smaller, To describe this correctly in the relations (2) and (3),
the calculated valley boundaries must be moved over a distance
EFB to the outside of the magnet.

Orbit ealculations

At this stage we calculated the shape of the valley to pro-
vide both isochronism and closed orbits. To check the SCOFF
approximation, orbit calculations were performed, using the com-
puter code HIATT®. The required input is the magnetic field. To
generate the model field we made the following assumptions: the
magnetic field al a given position in the valley is described by
the mix-function (7), and the distances x and b-x in (7) are the
shortest distances to the valley boundaries.

At the neighborhood of the entrance point of the RVP magnet,
there are three fringe ficlds. In order to reduce the effect of this
mixing field on the particles, it is suggested (o cut off the valley
about 0.1 m from the pole boundary.

From orbit calculations, it turns out that the orbits at an
energy 7.3-30.3 are closed, using the equations (2) and (3) to
calculate the shape of the valley and using the above mentioned
assumptions to generate the magnetic field. This proves that the
model field provides both isochronism and closed orbits.

Conclusion

In this paper, we described isochronism relations for a three
sector magnet, using a hard-edge approximation. Fron: POIS-
SON calculation we fitted a fringe field function, which enables
us to describe the realistic magnetic field by a hard-edge ap-
proximation. Using this description, a possible valley shape was
derived dependant on important microtron parameters, such as
magnetic field By and energy gain A~ in the cavity. Closed or-
bits as well as sufficient vertical stability were obtained with the
following set of parameters: relative depth ax0.4 and & <200,
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