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Bent single crystals have been suggested as a method for
the extraction of beams from high-energy particle accelerators.
To investigate the efficiency of beam extraction, we have ex-
tended our Fokker-Planck transport studies of channeled beam
transport to include crystal curvature. Dechanneling fluxes can
be deterrained as a function of bend angle and particle energy.
Solved as an initial value problem, the theory also includes the
divergence angle of the beam impinging on the crystal.

Introduction

We have recently considered the transport of beams of charged
particles in crystalline channels using a Fokker-Planck model in
two-dimensional phase space.! This work was motivated by an
i1 in the extension of plasma acceleration schemes to the
solid-state plasma®?® and therefore concentrated on the effect of
large accelerating gradient on the channeling. Tn the near term,
there are other applications of the phenomenon of channeling
in crystals in accelerator physics which are of interest.? The de-
flection of a beam by channeling in & curved crystal® has several

intere

uses in such a context; extraction of a beam (or some part of
it) being one. In this paper, we extend the theory of Ref. [1]
to include the effect of the crystal curvature. The procedure is
straightforward. This gives us a Green’s function from which
the distribution function in the two-dimensional phase space
appropriate to planar channeling® can be found. This is done
in the usual way by convolution over a given initial distribu-
tion. The measured gquantity typically is the relative flux of
particles channeled. This is obtained by integrating the distri-
bution function over the phase area occupied by the channeled
particles. We then evaluate the channeled flux for particular
sets of parameters,

Fokker-Planck Solution

In this part, we discuss the solution of the Fokker-Planck equa-
tion for planar channeling in a curved crystal. This is of neces-
sity brief and will heavily rely on Ref. [1] for details.

For a particle moving through a bent crystal under chan-
neling conditions, there is, in addition to the force from the
channel potential, a centrifugal force acting. In the case of con-
stant curvature treated here, the force is:
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where K is the “spring constant” of the channel potential here
assumed to be harmonic and Ry is the radius of curvature of
the crystal. The usual relativistic factor, or the particle energy
in rest energy units is v. As in Ref. [1], it is convenient to
normalize momenta to mc and energy to mc® where m is the
particle mass. The radius of curvature of the bend is related to
the deflection angle, x, by Ry = L/x, where L is the length of
the crystal. In normalized units, the equation of motion then
becomes:
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where &' = Ka?/yme?, X has been normalized to a, the chan-
nel half width, and s is the (dimensional} path length through
the crystal. Now, by defining X = X + ¢/ K, the equation of
motion is the same as in Ref. [1] with the accelerating gradient
zero. The result for the Green’s function quoted there, Eq. (11 ),
can be immediately taken over by replacing 7, ¢ with N~ 7o,
¢ — Co. respectively. This accommodates an initial distribution
f(no,¢a) at s = 0. The mapping between ()2, 6y — (n,{) is
given by the solution of a harmonic oscillator equation:
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where w 1/a, V'K is the betatron frequency in the channel
well.

We remark that we have recently considered the case of
non-constant curvature. In this case, the general method used
in Ref. [1] can be applied but the result cannot be obtained in
so simple a way. We will report on the non-constant curvature
bending in a subsequent paper.

Dechanneling Flux

We have considered two initial distributions at s = 0. Both are
uniform in X The distribution in angle has beer taken to be
Gaussian in one case and uniform in the other. Spatial unifor-
mity is a very good approximation because the beam width
is much larger than the separation between crystallographic
planes. Gaussian distributions are conventional for the beam
divergence while a uniform distribution makes more sense when
making comparisons with some other theories. In both cases,
the initial distribution is convolved with the Green’s function.
To calculate the flux, the resulting distribution is integrated
over the phase area occupied by the channel. In general, one
is then confronted with a four-dimensional integral to be evalu-
ated numerically. In the case of both of the initial distributions,
two integrals can be expressed in terms of known functions. The
remaining double integra!l is done numerically. In the Gaussian
case, the channelled flux is:
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where the rms angular width is 8y, the beam and channel can
be misaligned by the angle 6 and ¢, = ¢./a.w. The quantities

a. b, i, and A are defined in Ref. [1]. The limits of integration
of the inner integral are:
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Where, ! erfc is the first iterated integral of the complementary
error function and ¢(1?(3) is a function of its argument and 6
and 7’ as defined:
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The integrals are done numerically using a two-dimensional
Romberg quadrature routine constructed from the one-dimen-
sional algorithms of Ref. [6].

Some of our results, for the parameters of the experiment in
Ref. [7], are shown in Fig. 1. Here is shown the bending dechan-
nelled fraction as a function of particle momentum. {The bend-
ing radius was fixed in the experiment. Qur results are shown as
the solid line. Experimental points at room temperature (X)
and 128°K (A) are shown. The dechanneling is 40%-50% of
that experimentally observed.
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Figure 1: Dechanneled fraction: (X)293°K, (A)178°K, ...,

Theory, Ref. 8, Fokker-Planck.
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There are several possibilities for the difference. The theory
assumes that the bending is constant. While this is so in the
experiment for the central, bent portion of the crystal, there
is a flat segment of crystal before the bend. We have mod-
elled this by taking the initial distribution to be uniform of
width equal to the critical angle. To further examine this ap-
proximation, we have recently extended the theory to include
non-constant (including piecewise constant) curvature. As a
consequernce of the bending mechanism, the crystal was bent
perpendicular to the direction of the beam as well as along it.
How this two-dimensional effect manifests itself in the context
of a one-dimensional model is not clear to us. This is compli-
cated by the observation that the experimental data appear to
agree rather well with one-dimensional statistical equilibrium
theory® (shown dashed). The relationship between these the-
ories and the Fokker-Planck treatment in the transverse phase
space is a subject of current research. We have also calculated
the normal dechanneling in the case of 150 GeV protons shown
in detail in Ref. [7]. Our dechannelling length of about 6.5cm
is longer than that observed, about 1.5 cm, but quite consistent
with the empirical scaling of Ref. [4].
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