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Introduction 

ELETTRA is an electron/positron storage ring under 
construction in Trieste (Italy). It will be used as a light source for 
photon energies in the range of ultraviolet to hard X-rays (i.e a few 
to some tens of keV). Like all the new generation radiation sources 
its goal is high spectral brilliance/flux with good tunability. These 
design goals can be achieved by a storage ring in the energy range of 
1.5 to 2.0 GeV with very low electron/positron beam emittance (i.e. 
cx < 10 nm.rad) and the use of wigglers and undulators. 

In obtaining such a small emittance one must use strong 
quadrupoles for focusing and strong sextupoles to correct for the 
chromatic effects. On the other hand however, strong quadrupoles 
introduce large amplification factors (i.e between SO and 100) in the 
case of closed orbit distortions whereas strong sextupoles introduce 
nonlinearities that limit the dynamic aperture. In a similar way the 
insertion devices (ID) may,further limit the performance of the ring 
through a combination of lmear and nonlinear effects resulting in a 
reduction of the dynamic aperture. This occurs mainly because the 
IDS excite additional nonlinear resonances as well as destroy the 
sextupole optimization in the lattice. These devices also limit the 
physical aperture because they require a small gap size (15-20 mm 
for ELE’ITRA ). Since a large dynamic aperture (and momentum 
acceptance) is necessary to accornodate gas scattered and Touschek 
scattered electrons, it is evident that ELE’ITRA will be a very 
sensitive machine to onerate and the examination of all these effects 
that reduce its dynarnid aperture is therefore vital. 

The effects of IDS on the beam in the ideal (i.e. no errors in the 
machine and no closed orbit distortions (COD) j situation has been 
already studied analyticaly [l] as well as numeric&y [2]. With 
these studies we have obtained a rather good qualitative and 
quantitative understanding of the dynamics in the presence of an 
ideal ID. Ilowever, the very important aspect of the performance 
deterioration due to no ideal situations (i.e. random errors and 
closed orbit distortions) in the presence of ID, which are very likely 
to occur in a real machine, to the best of our knowledge has not yet 
been studied. Furthermore, analytic approaches such as given in 
reference [I] are inapplicable in our case - since they asume no COD 
or errors - and therefore cannot predict the important changes in tune 
shifts already reported from machine experiments [3]. 

The aim of our work is a systematic study - qualitative and 
quantitative - of ID effects on the beam dynamics in the presence of 
various possible errors. The study comprises the effects of IDS 
alone as well as its interaction with the ring. In such problems one 
already knows Hamiltonians/equations of motion, but the real 
difficulty lies on their integration. We do not use perturbative 
approaches since the ID magnetic fields are highly nonlinear. We 
rather integrate the most general equations of motion using 
RACETRACK [4] in a symplectic way [S]. Therefore one can 
study the effects quantitatively as accurately as desired and 
afterwards rely on analysis for their interpretation. What we shall 
explicitly study here is the effects of COD and errors on the linear 
tune and dynamic aperture in some realistic cases for ELE’ITRA 
with one typical plane wiggler and undulator. 

-1 Description of the Numerical Approach 

As already stated, in order to simulate particle motion in thr 
presence of arbitrary closed orbit distortions inside an ID one can 
not use the L. Smith llamiltonian [I], since it describes the betatron 
motion with respect to the ideal equilibrium orbit in the device. 
Since for our investigations the ideal orbit is no longer the reference 
trajectory we prefer to describe the particle’s position in space using 
the same fixed Cartcsinn frame as the one where the magnetic field 
of the device is expressed. One may write the FIamiltoni:m 

describing the transverse motion in a Cartesian frame as: 

H = ; [PX - kAX12 + * IPy - ZA,l’. 

where A = (A,, Ay, Al) is the vector potential ) Ai is assumed to 
he identically zero and the other symbols have their usual meaning. 
For simplicity, only the nominal energy particle is considered. The. 
magnetic field expressions, correct to the first order, of a plane ID 
may be derived from the following vector potentials: 

A, = ~cosh(k,x).c-ilsh(kyy),sinikr:, 031 

A, = - ~~~B~sinh(k,s),sirlbik,y ),si,,(kz). i2bi 
i 

k; + k; 7 k’ = ,I.&),, 3.: @oti length of an II) 
h 

and Bg the peak field 
Once the Hamiltonian is specified, the particle motion may be 

followed by adopting the canonical integration technique which 
guarantees the symplecticity of the system. As in 151, a two-step 
integration is made for a gjven increment to achieve the accuracy up 
to the second order in the Increment. Working in the fixed Cartesian 
frame one has also to transform the equilibrium orbit of the device. 
which in fact is nothing but one of the trajectories defined by the 
Hnmiltonian with particular entTance coordinates. For the ideal plane 
sinusoidal device the equilibrium orbit is periodic and can he 
approximately derived by neglecting the field dependence on Y :1nc1 
y : 

coaikz) &, z -.--~ 
k;‘p ’ 

x. _ sinjkz’l 
v - 

kP 
(31 

ye = 0. & = I). 

In reality. these devices have additional endnoles in order t(-t shift the 
trajectoj onto the equilibrium orbit. We have assumed, in order to 
avoid further complications, that the amount of shift is the same fbr 
any equilibrium orbit. This treatment is also consistent with the 
former approach 121 using the L.Smith Hamiltonian. To be 
accurate. the amount of shift is determined hy se;uching an exact 

periodic orbit numerically, starting from the values at I = 0 in Eq. 
? _.. 

From the Hamiltonian (1 j and the described treatment of the 
endpole shifts. the trdnSfoI’mttiOn over an ID is completely 
specified, closed orbits can be computed and what remains is IIK 
matrix calculations to derive the linear optics around it. To find the 
transfer matrices for the ID - which must not be simply 
approximated as a thin element like a multipole - four trajectories 
each differing infinitesimally in x, x1. y and y’ from the obtained 
closed orbit at the entrance are integrated through the ID. The exit 
values are then used to extract the linear part of the transformatioc 
which is represe:ited by a 3 x 4 matrix. Thus, all the local changes 
of the linear comoonents alone the distorted eouilihrium orbit in the 
device are effecti&ly enJxdd& in the resultin; matrices. 

We have imolemented the described scheme in RACE’1’RACK 
[4]. It should be’stressed that the present approach is more general 
than the former 121 one. In the ideal case with no orbit distortion it 
should give identical results - apart from approximations made in the 
forme.r - and in fact, reasonable agreement has been founci in cases 
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studied so far. Finally, we should also mention that the 
implemented rourines are capable of treating helical IDS as well, 
although numerical studies with these devices are not presented in 
this work. 

Numerical Results and Discussions 

The numerical method described is applied to ELETIRA (61, 
including one ID in the ring. In the present study, two typical plane 
sinusoidal undulator and wiggler are examined whose parameters 
are shown in Table 1, Since our central interest lies in the effect of 
COD in the LD as well as in the machine performance with IDS in the 
presence of various magnetic errors, misalignment, field and tilt 
errors are assumed for dipoles, quadrupoles and sextupoles whose 
rms values are listed in Table 2. The errors are randomly generated 
according to the Gaussian distribution. 

Table 1. 
Insertion device parameters. 

.____ 
..-. 

Field (T) Period (cmi Ko. of veriod 
wiggler 5.0 30 10 
undulator I.2 5. 100 

Table 2. 
rms values of tnagnet error assumed in the simulation. 

_ .- -..-~--..-- 
Dioole 

field error 0.12 % 
misalignment 
tilt 0.5 mrad 

OuadruDoIe 
0.1 o/o 
0.2 mm 
0.2 mrad 

-_____ 
Sextupole 

0.1 4nc 
0.2 mm 
0.2 mrad 

.-- ^ _.... __ .._ .___ ____.... - .-.. .-..-. - 

Effect of COD in ID: 
To he able to distinguish the effect of ID alone from that of rest 

of the ring, we first p&rmed calculations with sextupoles turnctl 
off and errors consisting only of quadrupole misalignments that 
generate COD in the ID. The effect of ID is then studied as a 
function of the amplitude of distorted orbit hy scaling the strength of 
dipole components in the quadrupoles. 

The features of calculated COD in the ID itsself is that, for one 
thing, the orbit passes through the device with a tiny wiggling 
motion on top of it, and for another. the amplitude is reduced 
compared to the case of drift space. The latter is a reflection of the 
fact that plane sinusoidal devices, with an assumed condition kx = 
0.1 k, are linearly focusing in two transverse directions, whose 
strength art’ givrn respectively by kx*/[2(kp)2] in the horizor.l;tl. 
and k,z/[2(kp)zl in the vertical [I], The reduction is therefore most 
enh‘anced with a wiggler in the vertical direction. 

As the field inside the ID is highlv nonlinear, a study of 
linearized field ‘around a distorted equilibdum orbit may be of grear 
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Fig. 1. Vertical (linear) tune shift as a function of rms COD in the 
ID. (a) Undulotor. (b) Wiggler. 

importance since the resulting change of optics from the ideal case 
may be crucial to the machine operation. With the type of devices 
considered, the obtained 4 x 4 transfer matrix reveals that: (1) The 
effective focusing strength increases in both x and y direction 
with orbit distortions. (2) The focusing strength along the orbit is 
non uniform. (3) Coupling terms are negligible. 

The first aspect can be clearly seen in Figs. 1, where the increase 
in the vertical tune is plotted against the vertical rms amplitude 
deviation from the ideal orbit, for undulator and wiggler, 
respectively. One notices a marked result that the tune shift with 
COD is more pronounced with an undulator, although in the absence 
of COD, it is larger with a wiggler. This may be plausible since the 
change of tune with COD should be more sensitive in a field with 
higher nonlinearity which is the case with a shorter period device 
[ 1, 21. Similar behaviour was also seen in horizontal tune shifs, but 
much more reduced. The observed tune dependence on the COD, 
which seems to be quadratic, is yet to be understood. Analytical 
approaches have been investigated in this respect, one using a 
covariant formalism treating the equation of motion with respect to 
arbitrary orbit [7], and another in the Hamiltonian formalism with 
certain canonical transformations [8]. 

Effect on the nonlinear motion was investigated by calculating 
the tune shift with amplitude. With fixed initial betatron amplitudes 
particle tracking was made, again by scaling the dipoles to vary the 
COD in the ID. Changes in the tune shift were very small ( less than 
* 0.001) in the range of COD considered, which had largest values 
in the vertical motion with an undulator. In this case, the tune shift 
has no definite direction, although on the average it seemed to 
increase with COD. Again, these aspects are to be confirmed by 
analytical approaches. 

Combined effect of ID and the ring in the nresence of errors: 
From the practical point of view, it would be very important to 

simulate the machine as closely as what would be in reality and to 
find the net effect on the particle motion. For this purpose, we 
generated 10 machines with errors according to Table 2, each for the 
case of undulator and wiggler. For every machine. correction of 
COD was made under the given corrector and monitor arrangement 
of ELETTRA [6] and using the two correction schemes provided by 
RACETRACK. The degree of correction achieved is summarized in 
Table 3. Linear tunes were then readjusted to the nominal values by xl __. .._. . I: _- . ..___.. _._ .” . (a) 0 
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Fig. 2. Dynamic apertures with ID, in the presence of errors, 
calculated for 10 machines. Dark circles represent the averages, 
bars are the ems deviations. For comparison, those of the ideal ring 
with no ID (white squares), and with ID and no errors (triangles) are 
shown. (a) Undulator. (b) Wiggler. 
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Table 3. 
rnx values [mm] of residual COD in the calculation of Fig. 2. 

INSIDE ID 63 MONITORS 
<Xmls> <Yrms> <XIYE.> <Ymls> 

Undulator 0.218 0.025 0.391 0.070 
Wiegler 0.175 0.012 0.394 0.070 _,, 

varing two families of quadrupole triplet. Particle tracking was 
performed in the resulting rings to calculate the dynamic aperture. 

The results are shown in Figs. 2 for undulator and wiggler, 
respectively. For comparison, the dynamic aperture of the ideal ring 
with and without ID are also plotted. It is seen that. even with 
errors, no drastic reduction of -dynamic aperture is found in both 
cases, which is especially true with a wiggler where the reduction is 
roughly by only few percent. 

The result may be interpreted as that: (1) The dynamic aperture is 
mostly determined by the ID itself (so that not by others such as 
accidental sextupole resonancesj, and that (2) The stability of motion 
is not very senritive to the presence of small COD in the ID. To 
somehow confirm these points, we performed additional 
computation of dynamic aperture as a function of the magnitude of 
COD, by scaling the dipole strength (as was done previously) for 
the three cases: (i) No ID. (ii) With an undulator. (iii) With a 
wiggler. The results shown in Fig. 3 together with ‘Table 4 se,etns to 
justify the ahove two conjectures. 
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fig. 3. Dvnamic aperture as a function of the magnitude of COD. 
calculate&for 10 machines (see also Table 4.). Triangles: Without 
II>. White circles: With sn undulator. Dark circles: With a wiggler. 

Table 4. 
rms values [mm] of COD at the position of ID,t in correspondence 
to Fig. 3. 

SCALE 
c X rms > 

0. 0.3 0.5 
O.Sslx 1.732 2.824 

<Ymls> 0.301 0.887 
T Calculated without including an 1D 

1.453 

Summarv and Conclusions 

In the nresent work, we have described a numerical auuroach to 
study the dffect of ID on beam dynamics in the presence df’arbitrary 
COD. The motion in the ID was solved in the Cartesian frame. 
using a canonical integration technique, and the (distortedj 
equilibrium orbit in the device was taken into account expiicitly. 
From the integration of the orbit itself was simultaneously deduced 
the linear transformation of tho ID to reconstruct the (distortetl) 
optics of the ring, 

Application to I~l.ETlXA was made having a plane sinusoidal 
device in the ring with the COD. It was founci that these devices do 
not contribute much to the distortion of the closed orbit, apart from 
small reduction in the magnitude when the focusing strength is 

large. An important findings was the increase in focusing strength 
with the increase in the COD, which was notable with a shorter 
period device. In the case studied, the additional tune change 
amounted as much as 40% of the ideal tune shift, with 4 mm rms 
orbit deviation. Changes in the nonlinear tune shift was also more 
stressed with a shorter period device, but was quite small in the 
range of COD considered ( < 10 mm). Dynamic apertures 
calculated for realistic cases where the COD is corrected with 
steering magnets leaving small residual COD in the ID, showed no 
drastic reduction compared to those of the ideal system. It may be 
concluded that the stability of motion is not sensitive to the presence 
of COD in the 1D to the extent as numericalIy verified. 

It would be of great help to the further understanding of the 
issue if the features found from the numerical studies are confimled 
by analytical approaches 17, 81. It would also be important to 
extend the present work to other type of IDS investigated for future 
synchrotron light sources. 

We would like to thank Dr. Albin Wru!ich for suggesting thr 
subject to us and for many helpful discussions. 
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