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Abstiract: Focusing solenoids incorporated in
the storage ring lattice may be especially useful in
colliding beam machines at intermediate energies (s 0.5
GeV). An example to this can be the Novosibirsk ¢-fac-
tory project which envisages for a new generaticn col-
lider with ultra-high luminosity at the ¢-meson reso-
nance energy [1]. Here strong superconducting solenoids
perform a combined service to provide for round cclli-
ding beams: i) focusing to obtain equal B-functions of
very low value at the collision point { Bx= Bz= 1 cm):
ii) equalizing transverse emittances of the colliding
bunches due to coupling of the betatron modes which are
alternately excited by radiative diffusion in the two
arcs of ¢-factory.

However, these advantages of solenoids are paid
for with major nonlinear perturbations in transverse
motion due to their end-fields. This results in tune
shifts (and spreads), excitation of nonlinear resonan-
ces and limitation of dynamic aperture.

The paper presents analytic estimates of the
end-field nonlinearity effect and simulation results to
determine the dynamic aperture in one of the ¢~factory
lattice versions.

Equations of motion

Using the cylindric coordinates r, €, s and the
kinetic momenta P Pgr P, wWe put down the equations

of motion for a particle of momentum p
symmetric magnetic field Hr’ HS

in the axially
with the vector poten-
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tial AO [2]:
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where ¢ stands for the magnetic flux;
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Taking for the ultra-relativistic particle p = ymc and
substituting (2’) to (2), we obtain in place of (1) and
(2):
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Introducing the paraxial field description by its on-

axis longitudinal component H{(s) and by the relevant

derivatives H' = dH(s)/ds:

Ho=H-Lp 2w (6)
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Wwe obtain  the radial motion equation to the first ap-

proximation:
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for any trajectory, including non-meridianal ones: BOxO.

In the cartesian coordinates x, z, s the non-
linear "centrifugal" force in the left-hand side of eqg.

{(7) will naturally disappear. Then changing to the nor-
malized variables X = x/VB, Z = z/VB, ¢, ( Bx= Bz, 4x=
Wiz for the round beams) we obtain instead of eg. (7):
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where R2=X2+Z? These equations are uncoupled in the fra-
me, rotating at the Larmor frequency taken on the axis,
while the nonlinear contribution to ® in (5) will tbe
negligible for sufficiently short ranges of nonlinea

field ( r = ceonat). Thus the problem is reduced to the
1-dimensional motion, and the main nonlinear term from
the solenoid end-field is just a cubic nonlinearity, ac-
ting radially.

End-field nonlinearity

The micro-f condition at the colllislien point ap
parently gives large B-values in the focusing solencids
(B =15 m at the nearest sclenoid entrance in the ¢-
factory lattice).If the betatron phase advance over the
end region is small enough: Ay =(coil radius)/B =22-10 |
we can account for this lumped perturbation as a thin
octupole lens:

i

X + X = ~a RX 8(y), (9)

M T

+ 2

1]

- R°Z 8(y), (e)
with the integral strength o :
+ {0
l{e 2 2
o = - §[EE] I H H" B° ds (10)
-®

If the B-function varies slowly
range, we can give a very simple estimate:
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over the end

pc

which comes to =100 cm ' for the worst of our ends. He-
re the contribution of the Sth-order terms, omitted in
(8}, is within 1 per cent for our maximal amplitudes.

From egs. (10), (11} one can see an important
general property of the axi-symmetric field: its contri-
bution to the cubic nonlinearity is positively definite
for sufficliently short end range. Hence we are not able
to compensate for this perturbation by means of an axi-
symmetric corrector. To minimize this effect one can
only reduce B-values at the ends, or shape the solenoid
coil so as the end range be longer.
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Fig. 1. The schematic layout c¢f the focusing
solenoids in the ¢-factery straight section.



Fig. 1 shows the relative strength of the sole-
noid end perturbations in the ¢-factory lattice and the
phase relations between them.The special feature of our
lattice is that the phase advance between the strongest
two perturbations is m, hence in an analytical approach
below we can merge all the end-field perturbations in
one octupole lens with the total strength. Besides, the
arcs have the transport matrices Tx= Tz, that enables a
one-dimensional treatment of motion all round the turn,
because the meridianal trajectories are thus preserved

Analytic estimates

Let us describe the motion in the ¢-factory lat-
tice in terms of the phase space map M after each pas-
sage of 1/2 revolution:first the particles pass through
the thin octupole lens, and from (9): AR’ = -&-R”; then
they pass through the linear optics of the arc and gain
the betatron phase advance p = 2n{v/2}, here v is the
tune. Hence the transport matrix in the normalized va-
riables will correspond to a simple rotation:

I cosp sinp
57 |-sinp cosp)

The fixed points of the map #" are the periodic
trajectories closed over n turns, they are easy to find
aralytically. We will use their positions for a reaso-
nable estimation of the dynamic aperture limits. Keep~

ing in mind the positive cubic nonlinearity, we
see that the study of the fixed points
= 6 will be sufficient.
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Fig. 2. The 2nd-order periodic trajectories.

Let us consider the simplest case n=2 in detail
For both pericdic trajectories closed over two turns,
the displacement X and the angle X’ are readily found:

X = a sin(p/2-¢), X = - a cos{p/2-¢),
p=0 at the position of the octupole, whose action gives:
AX' = - 2 a cosp/2 = ~ a x°
Hence, we find for the stationary amplitude a,
a = mzﬂs%/a (12)
o sin p/2

Linearizing the motion in the vicinity of this resonan-
ce: X°- Xi = 3 XiAX, we obtain feor the optical strength
of the emerging linear lens: 1/F = 3 « Xi, and the sta-

bility of the fixed point is easily Jjudged from the ma-

trix Mz of the relevant symplectic map:
M= [wc?sp sinp]l[— 1 0 J '
2 sinp cosp 1/7F 1
Sp M2 = =1+ 4coszp/2) < -1,
thus the 2nd order fixed points are always unstable.

Now consider
have twc couples of points, the "bad” one

the fixed points for n=4: here we
is unstable.

1427

It can be obtained from the previous study 1if we place
in Fig. 2 an additional octupcle lens in the nodes of
the resonance trajectory or, in other werds, if we re-
place p/2 by p (see curve 1 in Fig. 3a). The 2nd fixed

point corresponds to the trajectory 2 in Fig. 3&. It can
be found from the set of equations:

X = a sinp/2 = b cosp/2 = X

X=X = e X
1 2 vy 5
or: a cosp/2 ~ b sinp/2 = « a sin'p/?
hence a = cosp (13
ar

« sinap/Z cosp/2
Now the linearization yields SpM4= -2cosp, and we can

see that this “good” fixed point can only exist and be
stable for /3 < p < /2
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Fig. 3. The 4th- and the 6th-order periodic

trajectories.

The case n = 6 is studied similarly and yields
for the triplet of "good" fixed points, whose trajecto-
ries resemble curve 2 in Fig. 3b :

.. cos3psd _..cos3piz

a =

or ;0 b=
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or
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6
with the stability range of 0 <p< n/3 just colnciding
with the existance range (mind that the nonlinearity is
positive!). The other triplet of fixed point of M is un
stable as it should be in general [3].

The fixed points of #? and M® are obtained
in the same manner, but the emerging transcedental equ-
ations do not allow for the same simple form of the re-
sults as for n = 2,4 and 6. The numerical sclution re-
veals a simple general relation for 2 =nx 5 in the
range of its existance p € [ 0, 2n/n] the "good fixed
peint" is unstable for p € [0, =n/(n-1}}, that is just
in the interesting range! And only beginning from the
6th order the resonances acquire the "good fixed point”
that is stable throughout the resonance existance range.

This conclusion enables a simple estimation of
dynamic aperture based on eq. (14) for the 6th order
fixed points ( in the case p <« 1 and f'=0 ) :
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(15)
which restrict the phase space domain, circumscribed
by the last resonance yet having the stable fixed point
Somewhat more rigorous definition of dynamic aperture
might be: the domain which is circumscribed by the lar-
gest invariant trajectory which is separated from the
resonance by the width of its manifold [3] (i.e. its
stochastic layer). For cur parameters the width appea-
red to be small as one could see from the simulation
results ( see Fig. 5). For the ¢-factory lattice in que-
stion eq. {15) gives = 4 cm or about 15¢ for estimated
dynamic aperture.

Note that in the case of small deviation from
meridianal motion which is practically interesting for
us the two-dimensional problem is reduced to radial be-
ating and some additional slow precession of the 1D tra-
Jectories analyzed above. These phenomena {(see Fig. 7 )
manifest the energy exchange between the two modes.

Simulation

The numerical simulation was based on the rea-
listic ¢-factory lattice with 8 ends of the focusing
solenoids, actual betatron phase relations and B-values

(see Fig.1).To raise the efficiency of the code we used
the normalized variables defined above:X, X', Z, Z’ for
iterations so as the account of the linear optics be
trivial, and thin octupole lenses at each solenoid end
acted radially, with the integral strength (10} accura-
tely calculated once before tracking with the account
of B # canal over the end range.

The c¢lues to understanding of the simulation
results are given in the previous section, and the agre-
ement was good between the simulation and the analyti-

cal approach both in qualitative insight and in quan-
titative estimates. Typical patterns are shown in Fig.5.
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Fig. 5. Paraxial {(a) and non-paraxial (b) map
for the ¢-factory lattice with sclenoids.

The simulation included non-paraxial effects
due to large angular spread of particle trajectories in
the collision straight, resulting from low 8* and high
B” This results in modulation of longitudinal velocity
for the subsequent passages through solenoids. We pre-
ferred to track these passages in terms of time rather
than azimuth according to eg. (3). This effect caused
the dynamic aperture reduction by =15%, however its be-

haviour resembled the main effect of end-fields when
the latter were switched off. The similarity 1s shown
in Figs. 5a,b and alsoc can be seen in Fig. 6 where the

tune shifts are plotted vs.the amplitude squared.

Thz effect of non-meridianal trajectories was
simulated for various angular momenta. It caused some
insignificant (=15%) decrease in dynamic aperture:Fig.7

Though apparently useless, the "normal octupcle
lens was tried in simulation to compensate for the tune
growing with amplitudes. It did ncot work because of pre-

cession which averaged out its action. Of course more
elaborate schemes using fx- Bz differences at the oc-
tupoles of opposite signs are not forbidden however
they do not seem to be practical in a very tightly-
bound lattice like that of the ¢-factory.

The analytical estimates and the
sults agree in an optimistic conclusion
nenlinear end~fields of
lenoids placed

simulation re-

although the
the strong superconducting so-
in the ¢-factory collision straight for
micro-B focusing and for round colliding beams forma-
tion do severely restrict the dynamic aperture of the
machine, we still can hope for about 15¢. This could be
encugh unless some other effects (say, sextupoles)
would not do worse.

Better situation can be striven for by:
i) shaping the c¢oil ends to expand the effective
length of the end-field;
ii) keeping the betatron tune clcoser to the integer;
iii) choosing reasonably low f-values in solenolids;
iv) partial compensation in a lattice with opposite H’
and B’ signs at the ends ;
v) "normal” octupcles in an elaborate lattice provi-
ding for large pBx- Bz differences in the octupo-
les of opposite polarity, e.t.c..?
Neither of these means is simple,
reach a compromise with the luminosity.
The authors are indebted to Prof.
for the enlightening discussicn.
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Fig. 6. Tune shifts dependence on anmplitudes in
the paraxial (a) and non-paraxial (b) maps.
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