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Abstract 

We briefly rcvicw the formalism of symplcctic maps for 
nonlinear brtatron oscillations [I: and the theory of non reso- 
nant nornlai forrus [2], [3] in two tiimerisions. We then develop 
a technique for correcting the nonlinearities of the LHC lattice 
due to the systprnatic errors in the slll)rrconductixlg magnets by 
inserting multipolar corrrct0r.i near the main quadrupolrs and 
in the middle of each half cell (Neuffer lay-out). ITsing these an- 
alytical tools we minimize the amplitude-dependent tuneshift 
up to the sea-and order in the non linear illvariants; interference 
terms are taken into accollnt. 

A realistic modrl of tht* LIIC is c~~nsiclerc~d. including in. 
sertions, chromaticity correction and asymmetry of the cells. 
Two distinct cases arc’ analyzed: 11orma1 dipolrs and normal 
quadrupnlrs errors. We study diffcrrnt correction schemes, 
chc~cking thrir effectivtness with analytical methods as well as 
wit11 tracking simulations: the correction is good up to the dy 
namic aperture and, for some sch~rnes, also for off momentum 
particlrs. 

One of the main advantages of the strategy outlined is 
tilt, aualytir computation of the global niiriinluru without the 
need of any first guess. Moreover, the, clluice of the amplitude 
a.s t,hc p&urbative parameter allows to ordrr thr contributions 
to the tunrshift in a way that is suitahlr to the high order effect 
that dominate the LHC. C!orrection schmles can be computed 
also via thr numrriral tracking approach 141: WC chrrkcd for 
a realistic case that both methods lead to the same solution 
within a very good approximation. 

.lV4rmal form estimate of the.tuneshift ~-- ___. 

The brtatron oscillations of a single particle can be de- 
scribed using the formalism of symplectic maps also when the 
magnetic Iattic? contains large magnetic f?rld imperfections [l]. 
Each lattice element has multipole components (systematic and 
random errors: correctors) whosr strength is given by the inte- 
grated qradients of the field: 

(1.1) 
All the maps relative to the single elements are composed and 
truncated at an order :v to get thp final map over one turr. 3. 
The non resonant normal form approach consists in conjugat- 
ing 3 with a map ni which is an aml’litudr-depelld~nt rotation 
using a symplrctic transformation Q. Both N and 9 are power 
series in the normal form coordinates; contrary to the classical 

perturbative theory where the small parameters are the gradi- 
ents of the field, in this approach the perturbative parameters 
are the nonlinear invariants pl: pz. A theorem [2] guarantees 
that both the normal form and the conjugating function can be 
computed to every perturbative order provided that the linear 
tunes v,, vy are not resonant. 

The tuneshift reads as a power series in the nonlir;ear in- 
variants: as the co&ici~nt.s of this srrir satisfy some restrictions 
imposed by the syrnplccticity conditions, one has the following 
expression: 

SLj, =GPl + g:p* + 3g;p: t 2&p* + g;p; $ O(p3) 

6% 4Pl + ‘LdP2 i 923p: . 2y:p1,?2 i 3g,3p; t O(p3) 
(1.2) 

whw g, ‘-’ are real coeff~irieuts; it can br easily comput,ed [5] 
that the first two tunehsift orders i - I,2 depend on tl:e inte- 
grated gradients h’l according to: 

!?: 0: (K*)*, K3 j = 0,..,2 (1.3) 

!J: 0: (~*)4?(Ii*)2K3,Kzh;,(KJ!*,Ks j = 0,...3 (1.4) 

Due to the choice of the amplitude as small parameter the c(,T~- 
trihutions of the gradients to the tuneshift are ordered ir: a way 
which is different from thr standard classical approach IS]. It 
must by pointed out that the amplitude is the natural param 
eter for the correction problem as one wants to minimize thr 
tuneshift over a certain domain in the amplitudes. Moreover in 
the I,HC case this ordering is more appropriate as the higher or 
der effects of the sextupoles are dominating the tuneshift both 
on the first and the second order of p, and pz !5]. 

&ttiCe model .-~ 

Wr consider a realistic model of the LHC! with a four f(;l(l 
symmetry which includes detuned insertions (/I’= 4.0 m altvr- 
nating with p’-6.5 m) and crll asymmetry [7]. The corrcc- 
tion of the errors in the dipoles is carried out using four ele. 
ments for each cell according to the Neuffer scheme :6]: besides 
the usual chromaticity correctors MF and MD placed near the 
quadrupoles we insert in the middle of each half cell a central 
corrector MC (fig. 1). Each element has sextupole, octupole, 
decapole and in some schemes dodecapole multipoles. 

This cell lay-out allows a very effective correction of the 
first order effect in the gradients using the Simpson rule [6], [8]. 
Such a rule is not the best choice to compensate the amplitudr- 
dependent tuneshift in the LHC case, since the tuneshift due 
to the higher order effect of the sextupole is dominant [5]. 
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The chromaticity rorrectiorl is carried out up to tlic first 
order in the momentum error: this gives a linear relation be- 
tween the gradients KJC, X2j3 and KID. We use the central 

sextupole K2(: and the higher order mllltipoler to rnirliulixr 
the arirplitudr dependent tuneshift, while X~F and h’zr, cor- 
rect c-hromati~*ity according to the relation: 

{ 

KzF :== C,F f C2fTK2[! 
Kan =z- GIL) I c2nK2i7 

(2.1) 

where c,~, err) are proportional to the chrornaticity of the ma- 
chine with the errors, while c~f’, czl) are proportional to the 
rhromatirity caused by the central corrector. 

The values of the errors both in the dipoles and in the 
quadrupoles are taken from references [9], [lo] and are listed in 
tab. 1. 

Tab. 1 Normal integrated gradients of thr systenratic errors. 

~;:“::~~~~~~~~cII~. em 1 
-.-. ______. ~- -_..d 

sorrection..method 

The correction of the amplitude dependent tuneshift is car- 
ried out using an order by order method. We start to minimize 
the first order, fixing the sextupoles and the OCtUpOkE, and 

then we switch to the second order, fixing the decapoles and 
the dodecapoles (if any). In fact for each order i = 1,2 we have 
a set of i + 2 coefficients s~+‘,...,~~:: (1.2) depending on the 
multiple gradients up to the 4i +- 4 pole. There are two possi- 
bilities: if for a given tuneshift order i we have at least i f 2 fire 
parameters among the multipole gradients h’r the cocflcients 
can be set to zero by solving the system: 

l 

gi’,#,) = 0 
. . . 
gEJ+‘(K[) = 0 

(3.1) 

Otherwise, we need to build a norm for the tuneshift 6~1, due 
to the order i and minimize it. We used the norm which comes 
from the sum of the square of the tuneshift on both planes 
integrated over the sum R of the invariants: 

tzr(Pl,Pa;Kf) 7 (6v,lt)2 i (6v*lz)* (3.2) 

ll$‘ll = j& 1” t&l, R - PI; Ki)dpl (3.3) 

If we follow the order by order method /(g;+‘/( is a polynomial 
of low order in the gradients Kl and therefore can be minimized 
analytically. For this reason the normal form method has the 
advantage of automatically finding the global minimum, while 
with the tracking methods it is not possible to distinguish a 
local from a global minimum. 

-CJJrrection scheme9 for the dipole errors 

We analyzed four different correction schemes for the d- 
pole errors. neglecting the multipoles in the quadrupoles; in all 
the casts the ‘focusing and ‘defocusing’ srxtupolrs arc fixed 
hy the chrornaticity relation (2.1), so that. only the central sex 
tupole gradient Kzc is left free. The relative values of the 
octupoles, decapolt~s, and eventually dodrcapolcs vary in the 
following way: 

Scheme s) Free parameters for the amplitrrde dependent 
tuneshift correction arc: 

K ac, h’30, Ku- (4.1) 

The octupole and the dccapole are fixed using partly the Simp- 
son rule: 

1 
KJp = KIDS- SKsc 1 . KFICF = Kdn = ih4C (4.2) 

(we disregard the relation between the SUIII of the errors and 
the sum of the correc.tors). Having only two parameters for the 
first order and one for the second one we cannot compensate 
the tuneshift exactly but instcatl have to rninimixr it using the 
norm (3.3). 

Scheme a) Free parameters for the arrrpiitudc tlrprrtderlt 
tuneshift correction are: 

Kzc, Ksc:, K3F, h’4c, KIF (4.3) 

‘Defocusing’ octupoles and decapoles are set to the same values 
of the ‘focusing’ ones according to the symmetry condition: 

KZD -- Ku h-41, h-4 ,<’ (4.4) 

flitving three fret p.ararnetrrs F-lr the first ?)rdrr we c:kn con- 
pensate it exactly; the second order must he miuirniwcl rlsilie 
the norm function as only two parameters are available. 

Schrmc h) Frre parxmcters for t!rr amplit~rde dcprnilent 
tuneshift correction are: 

h’zr:,h,3c,K3F,K4c,K4F,Ks(:rKsF (4.5) 

‘Defocusing’ octupoles, decapoles and dodecapoles are set to 
the same values of the ‘focusing’ ones according to the syxnmc-- 

try condition: 

KS11 = K3.r~ h-41) 7 K4F Ksr) :- h-5~ (4.6) 

As we have inserted dodecapcJrs in the correctors we can ccirii- 
pensate exactly the tuneshift, of both orders. 

Scheme c) Free parameters for the amplitude drpenderrt 
tuneshift correction are: 

As we break the symmetry condition (4.4) we do uot need to 
insert dodecapoles to compensate exactly the first orders of the 
tuneshift. In this scheme both orders need to be minimized at 
the same time 151: this leads to a very complicated nonlinear 
system which must be solved by numerical methods. 

The effectiveness of the schemes was tested both with nor- 
mal forms and tracking [ll]; the main result is summarized in 
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tab. 2 which gives the region in amplitude where the tuneshift 
is less than 5. 10-3. Amplitudes are normalized to the horizon- 
tal beta fnnrtion in the focusing quadrupoles. We checked also 
the off momentum case, setting the energy error to half bucket 
heigth. 

Tab. 2 - Width of the linear zone. 

On momentum: flip/p = 0 
SY = ,005 

;-------i&; --g&+. y-j- 17.1 
xYrjrz:l.._. f -..j 

18.0 1 eJ?,.y ...._ 

Off momentum: hp/p - il.25 lo-’ ---. /i.:,~~i-r:,ro1-. .;;crJ!! __ ;,j 
0 nc remarks that in the on momentum case all the schemes 

provide a very good correction which allows to gain a factor 2 
in the linear aperture with respect to the bare machine chro- 
maticity corrected nc. Schemes b and c which were computed 
to compensate exactly also the second t.uneshift order do not 
show a dramatic improvment with respect to a. III the off mo- 
mentum case we gain a factor 4 with schemes s and a, while less 
than a factor 2 with b and c. For this reason both s and a ar- 
preferable as they provide a simpler and better overall correc. 
tion. It must be pointed out that all the schemes work also at 
high amplitudes as they have a healing effect on the higher 
orders; this was checked using normal forms [5]. Moreover 
it seems that in some cases the correction of the amplitude- 
dependent tuneshift leads to the same solution that one gets 
front the minimization of the off momentum tuneshift: an anal 
ysis with normal forms should give an analytic explainatitrn to 
this hypother,is. 

Quadrupole errors 

Due to the symmetry of the quadrupoles, the nonlinear 
multipole errors in these elements are 12’” and 20th poles (see 
tab. 1). As in this paper we deal with the amplitude-dependent 
tuneshift up to the second order in the nonlinear invariants 
we neglect the effect of the 20th pole, while we consider the 
contribution of the dodecapole to the coefficients gi, j = 0, .., 3 
which is linear in the gradient Ks (see 1.4) and proportional to 
the third power of the beta function according to the following 
formula: 

s: =&g s: = -$:il, 
ic 1, 

s: = - $P; 9,” = f&p: 
\“.‘I 

In this approximation there are no interfering terms between 
the dodecapole and the lower order multipoles: for this reason 
we treat these errors separatly from the dipole ones. The sign of 
the error is changing from focusing to defocusing elements; nev- 
rrthrless, as the contribution is weighted by the beta function, 
one has that the focusing element mainly gives tuneshift on 
the horizontal plane, and the defocusing on the vertical plane, 
For this reason there is no overall compensation between the 
quadrupolrs errors and an accurate estimate of their effect is 
needed. 

We first computed the tuneshift due to the dodecapoles in 
the cells: one sees that while for a round beam it is negligible, 

in the case of a flat beam the situation is more critic (SV z 
10m2), requiring a correction. The effect of the errors in the 
quadrupoles in the insert.iou is almost five times bigger, due 
to the high value of the beta function: we conclude that a 
correction is needed for all the quadrupoles in the lattice. As 
the best solution is to place corrector coils inside the elements 
(local correction), the computation of the scheme is trivial and 
does not require the application of the normal fortn technique 
developed in this paper. 

Conclusions ~- ._ -~ 

We have applied the normal form theory to evaluate the 
effect of the systematic errors both in the dipoles and in the 
quadrupotes on the amplitude-dependent tuneshift. We havre 
seen how this analytical approach cas be used to understand 
which multipoles are more dangerous for the stability of the 
motion, taking into account high order interfering terms which 
for the LHC case are very strong. 

The correction method outlined, which has been tested 
succesfully both with the tracking (41 and with the classical 
perturbation theory approach [5], has some important advan- 
tages. The mimimization procedure is completely automatic 
and not restricted to a certain ratio of emittances as it attacks 
the coefficients of the tuneshift function. Moreover we tested 
that the schemes are effective also for the higher orders (and 
therefore at high amplitudes) and for off momentum particles. 
A minimization procedure which corrects directly the off mo- 
mentum tuneshift will be considered in the next future. 
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