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Abstraoct

The radiation of electrons and thelr quantum
fluctuations lead to structure modification
~f the phase diasgrams. Specific features of
such diagrams are the absence of separatrix,
appearing of limiting stable cycle and
quasiseparatrix with slots in region ot
caddle fixed point, 1f the sextupole fileld 1s
sufficient. Qualitative phase analysis makes
clear the picture of acceleration process in
electron synchrotrons, may be used for
calculatlions of accelerator dynamic
aperture, formation of the beams wilth small
phase volume and realization of the slow
extractlion process.

Introduction

The phase plane method consists in
constructing of the phase diagrams with
shifts from resonance. Phase diagrams for
ecyelic electron accelerators differ Irom
the similar diagrams for proton machines.
The reason of this is synchrotron
radiation, leading to increasiy or
decreasing of betatron oscillations,
depending from the main ring magnet
structure choice. For illustration the
gshortcut Bogolubov-Crylov equations, taking
account of synchrotron radiation and their
quantum fluctuations, have been obtained.

1. 3v=m Resconance with Synchrotron

Radiation

In the electron synchrotron the radial
hetatron oscillations are described by the
equation [11}:

2a(1-n)/Ro= F(rg,wis) (1)
F (T, p,wis)= -2 w/Eg- ' /E -n,25/ (2R%)-
—2* (T 4D (1-(1-2n)4/R) ]

X:z+¢AE/ES— radial deviation of  the

non-equilibrium particle with the energy
E+AE, - the dispersion function of the

synchrotron main ring, I'/R= w/(CES)~
radiation energy 1losses of eleciron per

unit of path, P,:I/ES dkE/ds-  electron
energy increasing per unit of path because

)!

of acceleration, w(g)=ye,0(8-3, )-Ye, 6(3-3
Sk LR R

ekwthe energy of k-th quantum, radiated

by electron in the direction of its moving
with coordinate 8, upper line denotes

average ener over all rafdiated
quanta,n=-R/HOH/0z, n,~RE/H [3°H/OR ), R-

rqdius of the pqth curvature of particle
with energy E’8 in magnetic ftield W, ﬁQ;

average radius of the synchrotron main ring
Because of statistical independence of
individual acts of quantum radiation

w(s)= 0, (2)
WisJw(87)=55/(24¥3) r A1°0(8-3")/ R’

Ty~ 92/(mczl, A= R/(mc).

Equation (1) takes into consideration
only 1linear terms with w and [I'. 1ts
solutions near resonance 3v= M8 have the
form

z= ap+ a’@*= YEP cosd,
(3)
I'= a{p',*, a*q)‘ = '@76—((1005(1) + Siﬂq))'

a=jafe!® , o= o+ sv /Rt A, &= 4lal’w

where q,f - Twiss parameters, = |m|€/w ,
hazko+ jds’/ﬁ+vxe/H -Flogquet functions

phase, 0= v -m/3 +eAp/p -shift from

resonance for particle, having momentum
p+Ap, ®- radial chromaticity of the
synchrotron main ring, W- Wronskian.

Complex amplitude is described by
following equation

da/ds= t@*/(2W) F_(z,$,v;3) (4)

. According to (2), quantum fluctuations
give non-zero effects in case 1if terms,
describing them, have quadric forms. These
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terms are linear in equation (4) and equal
to zerc at averaging over all radiated
quanta.

As it is known, oanoq}cal variables
are amplitude squared |{a|“= E/(4W) and
phase 9. Terms with w(s) gntroduce
quadrically in equation for |a|® and it
will allow to take them into consideration.
We form combinations

dja|%/ds
ada*/dsr a*dasds = (5)
-21|a|?av/ds

1/W Im{aﬂfxw*)

+1/(2W°) Re(;Fx(s)(p*(s)z:F(S’)me(s')ds')
= 4

-1/ Re(a"fxq)*)

-1/ (2W7) Im(fx(sjw*(s)Zf(s')cpx(s')ds’)J

Let's transform the second term of first
equation into

J= Re(F _(3)¢*(8)[F_(8')p_(9')ds’

d,° z
=1/2 ~—|[F_(8')9" (3" )ds’ (6)
dsO

leaving the term, desoribing quantum
fluctuations, we get
— d
<WIo= 1/2 ——-
ds
(7}
2

8 ]
[ w8 )/Eg(9" @™y’ )ds '-w(3)/E "¢
Q

Averaging  equation (7) for Dbetatron
oscillations phases and, then, statistical
averaging over all radiated quanta give
finally the following eguation

<J>=55/(43¥3)r AY/EE <19 " 12> (8)

IT we make similar operations for another

terms in (6), we get shortcut
Bogolubov-Crylov equations in canonical
variables

de/da= A- <§x>e+ £ d{1lny)/ds-
-|F_1/(2R,) €/ ?sin(3¢-areF_) ,

- . 1/2
&/ds= 8/R,- |Fy|/R, €'/% cos(3-argF,),

4 = 55/(24V3) r AKY/(RB__ ),

K =Bt/ WL 19 171017 b [l 79,
/ - a e " - 3 v :.7
<§$>: 2/R0<P!?w(1«5n)$/ﬂj> ,[fa/aroﬁor /K

Factor K _may be reduced to the fogn
K:(wmax/ﬂ) , if radius of curvature R is

constant for all dipole magnets of
synchrotron. Term A4 in the first equation
determines  radial increasing of the
oscillation amplitude because of guantum
fluctuations. Second term describes
deocreasing { <€m>>0 ) or increasing

(<§x><0 ) of radial oscillation amplitude

due to classical part of synchrotron
radiation. <Ez> may be regulated with the

help of special damping systems. d(1lny)/ds
corresponds to adiabatic damping of
oscillations with energy increasing. This
term is absent in the case of the beam
accumulation and beam slow extraction. We
neglect it further.

. Analysis of the System of Equation

2
Solutions.

If resonances are absent ( ﬂW:O J,

equations (9) describe solution of radial
oscillations amplitude ohanges,because of
synchrotron radiation

—6<§x)(®—®oJ/R

e:1/<§$>[A—(A—<5z>so)e ol (10}

In limit case D=0 by <§x>>O , solution of

equation (10) determines the constant
amplitude Eet:A/<§x> because of classical

radiation damping and quantum fluctuations.
It corresponds to the stable limit cycle on

the phase plane ( VYE,® ).
Terms with [Fp|=0 are the main ones in

9, if the amplitude of  betatron
cscillation are small. Then the phase plane
dia%ram represents itself untwisting spiral
(e=0 is the point of '"unstable-focus'" type)
because of quantum fluctuations. If the
amplitude is somewhat more, a stable 1limit
cycle may take place (<§x>>0). The

resonance term is main <for the large
betatron oscillation amplitude and phase
diagram must have characteristic resonant
structure. These quality considerations are
confirmed by the phase diagramms
constructing for the different shifts from
resonance.

The acog%gts are
Ifh{:0.82928m' . RO=34.49 m, 8=0.005,

charaoteristio for Yerevan electron
synchrotron with the limit energy 6 Gev.
If the radiation absent 4=0, <El>:u

and the shift from resonance ©6=0,005 in
present, equations (9) describe the

executed for



regonance 3V _-m. Fig.1 illustrates a

standard situation for proton machines.

Saddle points for 020 approaches to the
rhase plane center along direction wst:

kw/3 , R=0,2,4 and the stability region is
decreased. If 8=0 ,the separatrix is
degenerated in rays Q= (2R+1)W/6,
RTO|1!2n31495-
Taking account of the synchrotron radiation
leads to instability of movement over all
phase plane. The characteristic triangular
structure of the phase diagramms remains,
if resonant term is large enough, but the
separatrix will destroy and the slots
appear in the angles of the characteristic
triangular. we call this structure a
quist-separatrir. The stability region does
net exist now.

Depending of chosen magnet elements,
installied 1in the synchrotron ring, the
radiation damping (<§I>>0) or antidamping

of radial oscillations (<§x><0) may exist.

Mapping points can flow out and flow into
inner region of the quasi gseparatrix.
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where €, =(48/|F )%, q:(?ROA/|Fm|)~'3.
Scl’(280<5m>/lpm|) ,Ysat coordinates  of
saddle points in absence of radiation
Axo,<§x>x0, Yaq,Yscl-
saddle points at shift §=0 for quantum and
classical increasing (or decreasing) of
radial oscillations respectively.

There are two increasing mechanisms of
radial oscillations amplitude: (i)its slow
increasing in inner region of
quasi-separatrix, because of radiation
<§%<O up to some threshold value near by

saddle points (ii)then, fast increasing
of amplitude due to resonance
Ir <§m>>0 and 4#0, limit stable cycle

exists in the inner region of
quasi-separatrizx (fig.%). In this case
three mechanisms have influence on the
development of radial oscillations
amplitude: (i)slow increasing from zero up
to the amplitude, corresponding to the
1imit stable cycle, (ii)classical
radiation damping, leads to slow decreasing
of amplitude in the region between 1limit
stable cycle and neighboring
quasi-separatrix branches. mapping points
flow into inner region through slots.
(iii)the resonance stipulates fast
increasing of amplitude in extermal region
of quasi separatrix.

coordinaters of

\, /

Fig.4

Phase diagrams, corresponding to
radiation damping of radial oscillations
<Ex><0, A#0 for shifts 8=0.005, 0.0005, 0.0

are presented 1in figures 2,3,4. The
separatrix will be destroyed at the angles
of characteristic triangular (saddle
points) with coordinates determinate by
solutions

.3 2 3/2 _1/2.,_,
£ ssts -(sq ~€.7 €)=0

(11)
tg(3P-argF )= (eg/z-eéfzs)/(sgfzs)

Fig.5 Fig.b

The regular cubic nonlinearity in proton
machines stipulates additional time
independent solutions (center type points).
In eleotron synchrotron these fixed points
can be stable ore unstable foci, depending
of sigh <§I>, fig.6.

Conclusion.

We can conclude ,that mapping points
flow out the inner region of
quasi-geparatrix through slots near fixed
points, form a small phase volume of beam
outside of this region. It may be used for
realization of the electrcn slow extraction
out of the synchrotron.

Phase diagramms for any m-resonance have
a gimilar peculiarity of forming.
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