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BEAM BEHAVIOR UNDER A DEFLECTING MODE SYNCHRONIZED
WITH AN ACCELERATING MODE IN RF CAVITIES

K.MIYATA and M.NISHI
Energy Research Laboratory, Hitachi Ltd.
1168 Moriyama-cho, Hitachi-shi, Ibaraki-ken, 316 Japan

Abstract

Under a deflecting mode synchronized with an
accelerating mode in rf cavities, electron beams
exhibit peculiar behavior in a circular accelerator or
storage ring. The electric and magnetic fields of the
deflecting mode produce the effects of beam pinching
and bunch lengthening. The pinching effect enhances
the brightness of the synchrotron radiation. Further-
more, beam loading under the deflecting mode gives
rise to a self-pinching effect and affects the
Robinson’s stability.

Introduction

When a deflecting mode cavity is used together
with an accelerating mode cavity under the condition
that rf phases of both modes are synchronized with
ecach other in a circular accelerator or storage ring,
synchro-betatron interactions dominate over the beam
behavior and they can vary the emittances of
synchrotron and betatron oscillations. In this paper,
the variations of the emittances during one revolution

are derived in the Hamiltonian formulation® of the
synchro-betatron motions. i .
The closed orbit distortion at the deflecting

node cavity induces significant beam loading effects.
We investigate two kinds of these effects,‘ phat is
the self-pinching effect and Robinson’s stability.

Influence of the Deflecting Mode

The synchro-betatron motions are influenced by
the electric and magnetic fields of the deflecting
mode. The influence of the deflecting mode is investi-
gated in the Hamiltonian formulation of  synchro-
betatron motions. The synchrotron and betatron motions
are described in the phase spaces (o, &) and
( x, p. ), respectively. Here ¢ is the longitudinal
displacement from the bunch center in the forward
direction: & is the energy deviation defined as
8= (E~E, YK, E is the energy of the particle
and E, is the energy of the reference particle, x 1is
the horizontal displacement from the closed orbit of
the particle with the energy deviation &, and px
of x. The

is the canonically conjugate momentum
quntity p« is defined as
]
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where
P «: horizontal kinetic momentum;
P ,: kinetic momentum of the reference particle;
B.o: lorentz factor of the reference particle;
Sp= (P~ Py)/ Py : momentum deviation
{ P : kinetic momentum of the particle );

P, = 8% dn/ds), (2)

with # an energy dispersion function and s a longi
tudinal coordinate along the orbit of the reference
particle.

The Hamiltonian of the synchro-betatron motions
under the deflecting mode can be written as'
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where
k 1 curvature of the reference orbit;
g, KD, 0B 9% (4)

X : horizontal displacement fromzhe reference orbit;
B.: bending magnetic field;

E(X,s) ¢ longitudinal electric field amplitude;

k : wave number of the oscillating field;

q : electric charge of the particle;

¢ , : phase constant;
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¥ o1 Lorentz factor of the reference particle.

The term 18 x in Bq. (3) refers to the phase slip due
to the betatron motion

In order to present the influence of the
deflecting mode on the particle motions, the canonical
equations are derived from the Hamiltonian described
above to evaluate the changes of x and p. after pass-
ing through one of the cavities, ~Ix and px , as
follows:
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H(X,s): vertical magnetic field amplitude;
7 .t characteristic impedance in a vacuum; and
st cavity length.
Conveniently, we designate V. as the magnetic voltage
while V is termed the accelerating voltage. The
factors Ts exp(jO:) and T exp(j@ ) are complex
transit time factors of the electric voltage V (x)
and the magnetic voltage V. (%), respectively.
Furthermore, the canonical equations of the syn
chrotron motion give the changes of o and & after
passing around the ring as follows:
[2nham ) 7 ( 5
d (\ kg 10 :

N |

Birt ,}¢” ~(;\/?‘:\‘)J(? an




1658

Tx (g\L‘(X!)Sin\’zp,--- 8 +pt48y), (18)

where h 1s a harmonlioc vnumber,
@& == @m _1_3___’ &= asyt By, 19
. 18 a momentum cg;paction factor, and @y and

B« are Twiss parameters of the betatron motion.

Variations of Emittances

The emittances of the synchrotron and betatron
motions are important for obtaining the beam size. The
betatron emittance € x and the synchrotron emittance
eq are defined as
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where

and agand By are Twiss parameters
motion,

Using Egs.(7)
emittances & x and

(21), the
egg during one

variations of the
revolution are

averaged over several betatron and synchrotron
oscillation periods to give
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Ja.(a) (n=0,2) is the n-th order Bessel function, and
a 1s the amplitude of the synchrotron oscillation in
the rf phase dimension.

When the particle

energy  1s so  high that

Y ou 1, Eqs.(22) and (23) approximately become
ey
(= A Talal, (28)
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For positive A with a<0j,=2.41 (je: the first
zero of J,(a) ), the betatron emittance decreases

and the synchrotron emittance increases.

The electric and magnetic fields have longitudi
nal distributions differing from each other along the
particle orbit. From Bgs. (12)— (16), therefore, the
complex transit  time factors Te expl(gfe) and
Ty exp(jOu) also differ from each other. That is
why the quantity A has a non-zero finite value under
the deflecting field, Thus we find different longitu
inal distributions of the electric and magnetic fields
of the deflecting mode are essential for varying the
synchrotron and betatron emittances.

Enhancement of Brightness

In the high energy region where the radiation
damping becomes effective on synchrotron and betatron
oscillations, the effect of the deflecting field cn
the beam is expected to modify the damping times of

the synchrotron and betatron oscillations so that the
beam size becomes smaller to enhance the brightness of
the radiation.

The damping partition numbers of synchrotron and

betatron oscillations, Js and J. , can be expressed
as J(r = T J];(J[;{‘?i) tlan, (30)
Jo= Lo+ e, (31}

where J‘ru and _’Vrv
the absence of the
including Ju are
deflecting mode.

are damping partition numbers in
deflecting field, and the terms
additional terms due to the
The quantity Jo, 1is written

E
y = 0 (32)
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where U, is an average synchrotron
loss per turn.
The area S of the transverse section of the bean

is proportional to the product of horizontal and

radiation energy

vertical beam sizes. Supposing that the vertical
emittance is proportinal to the horizontal emittance,
the area S s proportional to the horizontal

emittance & x at the location where the energy spread
little affects the beam size. Where S, is S with no
deflecting mode, the ratioc of S to S, is

S . -]w

e 22 : (33)
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The energy spread &8s can be written as
e 8 —'[ lo ] (30)
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proporticnal to the square
root of Jg. Here 850 and ao are §s and a with no
deflecting  mode, respectively. The synchrotron
amplitude a is self-consitently evaluated for a given
value of J, using Eq.(34).

Figure 1 shows the J p-dependence of S.”S.
and 8§57 §so with D=0 and 0.5, where D=1 J.,
and ao=0.1 radian. The solid line indicates D=0
and the broken line indicates D=0.5. The area S de
creses by a factor of about 3 to 5, and turns to in-
creasing when J, exceeds 2 or 2.5, because of the
growth of the synchrotron oscillation amplitude. The
energy spread §s gradually increases with J,, and
rapidly increases when J, exceeds Jg.. When the
energy spread & s increases too nmuch, however, the
particle runs away from the rf bucket, and the beam
size and the energy spread become meaningless. From
the above results, it is concluded that the brightness
of the radiation is enhanced about 3 and 5 times for
D=0 and 0.5, respectively, although the energy spread
is 3—5 times enlarged.
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Figure 1. J o dependence of S and 8.



Beam Behavior under Beam Loading Effect

Self-Pinching Effect

Eqations (28} and (29) can be valid even when
a finite closed orbit distortion exists. The quantity

Vu is the complex magnetic voltage including an rf
phase shift and written as
AR, A .
V”r:H~ELL)XOCO$PNW_ (35)
\1+48

where T is the beam current:Z . the coupling impedance,
B the cavity coupling coefficient to the external
circuit; X the horizontal displacement of the bunch
center: and ¥ is the tuning angle® of the deflecting
mode cavity.

The rf phase 6 is so0
voltage is directly proportional

set that the accelerating
to sinf. The beam

accepts a maximum decelerating voltage with W=0,
so that the synchronous phase 65 is W g /2 for
positive 7 X, and W—n /2 for negative 7 Xo,. Then

the constant A in Eq.(24) becomes
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and 160 = 04— 0. Usually T is greater than Ty
and /10 is positive, so that 0 <a<m/Z Then the
se f-pinching condition of positive A is that W<
o /% for positive n X, and that ¥>a—=xn /2 for
negative 7 X,. When 7 X <0 and W /2, we get
the maximum self-pinching rate A ...

Amay = K{ 7]X(,‘J'j)' alz

2k,

h;;'l'(l teosal, (39)

Robinson’s Stability

The deflecting mode affects the beam to give rise
to Robinson damping or anti-damping in a different
way from the accelerating mode. Suppose that the bunch
center 1§ passing through the rf cavity with
horizontally displaced from the symmetry axis by the
amount X - which 18 given by

XKoo= X+ pdmsin{wl), (40)

where &, is the energy oscillation amplitude divided
by the energy of the reference particle, W, 18
synchrotron angular frequency, and t is the time.
Following Wilson’s formulation in the accelerating

mode?, we get
in Eg. (35)

the complex magnetic voltage defined

Vi = 12 Uy /(143 (41)

where N
Uy = XpcosWwel¥ ‘“Z';)“"'a sing jbcosy) e, U
W &JJ b, (43)
a = cosW. teosw ., b = cosW¥. —cosw ., (44)
@ o=, B N2 tanty (&, (Wl /2, (45)
& tanw, u »iM)”>@3. (48)

@y

wo 1S the accelerating angular frequency; and

@y the loaded Q. The Panofsky-Wenzel theorem® re
lates the electric and magnetic voltages as follows
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The complex quantity V. traces out an ellipse
with a semi-major axis a and a semi-minor axis b in
the complex plane as illustrated in Fig.2 for positive
7 Xo. The symbols & n.x and &,.i, mean the maximum
and minimum energy deviations divided by the energy
of the reference particle, which are replaced by each
other for negative 7 X,. TFor positive n X, there-
fore, high energy particles accept a slightly lower
accelerating voltage compared with the reference
particle. For negative 7 X, low energy particles
accept a slightly lower accelerating voltage. There-
fore, the positive 7 X, contributes to the Robinson
damping, while the negative 7 X, contributes to the
Robinson anti-damping.
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Figure 2. Behavior of the beam induced voltage
vV, for positive 7 X,. The symbols & ... and
8 wis Mmean the maximum and winimum energy
deviations divided by the energy of the
reference particle, which are replaced by each
other for negative 7 X,.

Conclusions

Beam behavior was
mode., The electric and

studied under the deflecting
magnetic fields can vary the
synchrotron and betatron emittances inversely to each
other. Different longitudinal distributions give
different transit time factors, which differentiate
the effects of the electric and wmagnetic fields. The
fields 1induce a beam pinching effect enhancing the
synchrotron radiation brightness. Furthermore, beam
loading under the deflecting mode gives rise to a
self-pinching effect and affects the Robinson’s
stability.
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