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THE INFLUENCE OF CHAMBER INDUCTANCE
ON THE THRESHOLD OF LONGITUDINAL BUNCHED BRAM INSTABILITY.

V.I.Balbekoy, $.V.Ivanov

Institute for High Energy Physics, Serpukhov,

Beam intensity in a synchrotron being high enough,
inductive impedance is capable of maintaining sustained
coherent oscillations of a bunch at worse. But these
can turn out unstable given the presence of additional
impedance with a positive real part. The paper studies
the thresholds of multipole instabilities of a bunch
urder the assumption that all its oscillational eiger-
modes are determined by an inductance of the vacuum
chamber. The acceptable value of its impedance is fourd
to coincide with the well-known local criterion for
stability of microwave oscillations multipled by the
value of relative spread of synchrotron frequencies.
The effect of stationary space charge self-fields is
also estimated.

Let us consider a problem of longitudinal instabili-
ty of a bunch when inductive impedance is dominating in
the beam environment and the real part of impedance is
small:
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number, Q ig the
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where k is an asimuthal harmonic
frequency of coherent oscillations, wy
velocity of a gynchronous particle,
irductance of the chamber. It is convenient to use the
which is

describing the dependence of the cwrent on the azimuth

integral equation for the function J{¥)

in the co—mnvinq coordinate system (1]
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Here E and ¢ are the energy and the phase of synchro-
tron oscillations, QS(E) is their frequency and Qo is

particle

19 the

the small oscillations frequency, € is the

arnqular velocity, M is the number of bunches, J
average beam current, £ = mc v ard B are the par*tlcles
-y
Ap/p is the maximal

energy and reduced velocity, n = , @ is the mo—

mentum compaction factor, momentum
Index n=1,..., M is numbering the

modes of beam ogcillations which are discriminated by

spread. collective

the value of unch-to-bunch phase shift of coherent
oscillations, A = 2nn/M. The distribution function
F(E) is normalized by the condition

¢ dE E,

JF(E) = (3)

DS(E) QO
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where EO 18 the nmaximal energy of synchrotron

oscillations. When the impedance is given by Eq.(l

equation (Za) gets simplified:

A uﬂd(ﬂ)f'~”—§~ Ifuﬂ 8,0 J(e,de (4
1 1 1
M
where A.i{(l) is an eigen-value of Eg.(4) which 13
satisfying the dispersion equation:
;\i(ﬁ) = 1. (3)

It 15 shown in Ref.[1] that this
stable

problem has only

solutions when synchrotron oscillations are

linear. But we need to take into account the gpread of
synchrotron frequencies to plot the threshold map. For
this purpose we shall write down the eigenvalue A, ()

i

as a quadric functional in terms of the normalised

eigen—function Ji (%) :
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The threshold curve is the mapping of line Rel? = 0 onto
the complex A-~plane. The functions Ji('ﬂ) are  unknown
here, but we can eazily imagine the general appearance
of the threshold curves owing to the presence of reso-

nance denominators in Eg. (6). Restricting ourselves to
the falling—off distributions F(E) and monotonous fun-
ctions QS(E) we receive the result as in Fig.l. FEach
loop of the threshold map is connected with a contribu-

tion of some term of series in Eg.(6) (multipole) and

is placed in the upper or lower half-plane (depending
clabitity i \)
inelabillty
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Fig.1. A draft of thresold curves.



of the sign of Refi}. Therefore the threshold curve does
not cross the real axis. The only exception is the map—
ping of a vicinity closme to the point Refd=0. This fea-
ture is connected with the problem of suppressing the
stationary

this

negative mass instability inside a bunch by
space charge seif--fields. We shall rot discuss
problem as it is essential for much higher beam inten—
gities ns compared to the ones treated in the paper.

Unstable parameters are located inside the regions
encircled by separate loops of the map. These could ha-
ve represented physically feasible oscillations, should
the r.h.s. of Eg.(5) contain a complex quantity. Consi-
dering that it is not the case, we arrive at the known
conclugion that an inductive impedance can never cause
bunched beam instability. But the presence of the real
addition to the impedance puts limitation on the tole-
rable value of the inductivity, that was shown in [2].
We consider this problem not following the approxi-
mation of the "rigid"” mode of bunch cscillations,

Llet us suppose that some additional impedance chara-
cterized by ReZX) 1s located on the with
the impedance of Eg.(1). We do not need
expression. Suffice it to suppose that this extra impe-
and, by itself,

cause any beam instability. Bunch oscillations

orbit along

its explicit
dance is rather a small one cannot
eligerr—
modes are still determined by the dominant inductance.
Nevertheless, the form of the threshold maps

8¢ that can be

changes:
they are now rotated at a small angle
estimated, say, by perturbation theory. As a result,
the cuts between loops are rotated away from the real
axis and the point A = 1 can find itself within the in-
stability region. Herefrom. to provide beam stability
one should require that this point be placed beyord all

the cuts of the initial threshold map, in other words

max Re}\,i(ﬁ) 1. (7)

a1

Further we shall examine the case of a small

<
Im?t.izo =

nonli-

nearity that is most important in practice. In this

case it is possible to use the uncoupled multipoles
approximation keeping the only term in the mseries of
Eq.(2b). It is convenient to pass to
variables % = xA®, E = 8EO, f(e) = F(an), where 248 is

the bunch length. Then the stability condition (7) can

normalized

be written down as

*
hp R(e) < L (Ba)
2 L w_Q
L (8b)
MR A8 AD

The parameter h is approximately coincident whis the

ratio of coherent shift to the incoherent spread of

synchrotron frequencies. The dimensionless factor p is

the eigen-value of the equation
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where Tm 1s a Chebyshev polynomial. The eigen-functions
)mr(x) determine the set of the so-called radial modes
of the m~-th order multipole oscillations which are
nusbered by index r. The parameter e* 15 connected with
the c?herent frequency 0 = mﬂs(e*Eo] . The regions eﬁs 0
and € 2 1 are corresponding to the cordition Im = 0 in
Eq. (7). In these regions Eq.(9) is

bl
has a certain sigrature: p > 0 when & < 0, ard p< 0

Hermitian one and

when e*> 1. It is also easy to see that the values of
[pe| decrease with Ieil increasing. Therefore it iz
suffisiently to demand the fulfilment of condition (8a)
for e*= 0 and e*--' 1.

Eq. (9) was computed numerically for the distribution

2——4(—:2, D £ e 0,5
f(e) = 2 (10}
4(1-e)“ ,

The lowest radial mode wasdetermined for each [m]. The

results are plotted by the solid lines in Fig.2. The

dipole mode oscillations appear to be the most
dangerous ones because the values of |p<m1 | are
decreasing versus m. The cwrrent distributiona along

the bunch are shown in Fig.2 also for the dipole mode.
The limitation on the inductivity value follows from
account of the above result and Eqgs. (2d).(8):
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Fi1g.2. Eigen-values and correction terms.
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where H 1g the unch factor  With the exeption of the

last multiplier, the r.h.s. of Eg.(11) 1s the same as
the one of the local craterion for stabiiity of micro-
wave osclliations (3). Hence, the threshoid of multi-

pole oscillations 1s approxXimately AQS/QS times lower .

It 15 necessary to take into account the 1nfluence
of the intensive bunch stationary self-field on the
synchrotron frequency spread, 1.e.. the spread—inducti-
vity dependence. The impedance is given by Eq. (1), the

potential energy of synotwotron oscillations is:

ZWLJOwS nix)-n{(0}

1
U= + - Qa Ea XE%..‘, (12)
2

o ©

qZVMAﬁsin@ fnix)dx

where nix) is the linear change density, g and V are
the harmonic number and voltage of the accelerating
field, the points mean the external field nonlinearity.
whereof one can find the total oscillatilon nonlineari—
ty law:

St et [e +n_.Gte)] [&] (13)
Q. Tt Q) .
© o' rf
15 defined by Eqg.(8b), where the

contribution from the external field must be taken into

“he parameter h

conzideration only, that is indicated by subindex rf.The

function G{e} giving the beam self-field contrilution
is for distribution (10}):
4 -1/2 ar, _-1/2
Gle) = -—[g(e)—z ge)- =[1-2 ]] (14a)
3
n/2
16 > 5
gle) = 5 sin ¢ [ 1- € cos ¢ ] de (14b)
™
o)
Now, one can easily modify Eq.(Ba) to account for the

stationary self-field effect. As a result, the stabili-
ty critericn becomes a nonlinear function of hrf:

: *
hrf pnmr(e )

1+ hrfG(l)

h (15)

A
—

ef =

The factors Mﬁr are the eigen-values of the integral

equation which differs from Eq.(9) by the expression
for its resonant denominator, (8‘8*] - [w(e)—s*l, where
w(e) can be refferred to as the normalized synchrotron
nonlinearity law:

e + hrfG(E)

W({g) = wommmmmmrm— -, w(0) = 0, w(l) = 1. (16)
1+ hrfG(l)

The estimate shows that up to the near-threshold values

!hrfl » 1 the w(e)-function varies monotonously within

the range 0 wie) €1. The computational solution for

the relevant eigen—value problem can be obtained by the

Fig.3

1. h.s. of Eq.(1%) versus parameter hrr for |m|=1 (solid

atorementicned technique. shows the plot of

lines). Two tarngent lines present the analogous depen—
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Fig.3. Effect of stationary self-fields.
dence resulting from the first—order approximation. It
can be seen that the effect of stationary space charage
self-field widens the region of stable parameters

approximately by a factor of 2 for h<0 or 1.4 for h .
let us discuss the applicability conditions of the
uncoupled multipoles approximation. The Hermitian natu-
re of Eq.(9) allows one to estimate easily the contri-
bution of the multipole mixing by perturbation theory.
The additive corrections to the p-values are proporti-

onal to the AQS/QS, arxd the proportionality factor s

2n2
—z— (n#m)
a“mr = 2 ma_nZ *
n (~-0,5 (n=m)
1 1™ e
* —Ij (YEcosP)cos nd db| [f(e)]de. (17}
mxr
27
o}

L4
The summation is performed over the multipoles n > 0 of
calculation

by the
1

the same parity as m. The results on the
for distribution (10) are shown in Figs.2-3
dashed lines. It turns out for large |m| that [wl~|m]’
and |3p|~1, meaning that the results obtained remain
valid till |m]| : 0, /a0, . This is a typical limitation
on the applicability range of the uncoupled-multipoles
approximation, e.qg., see [4].

As an example, let us estimate the tolerable wvalue
of the vacuum chamber inductance for the lst phase of
the UNK. The evaluation by Eq.(11l) gives !LmSI'J ohm
for parameters £ = 600 GeV, JO =1.4A B=0238 |Inl -~
51074, app = 6.7.107° statical

effects raises the telerance to 5 Ohm.
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