1615

EVOLUTION OF LONGITUDINAL EQUILIBRIUM DISTRIBUTION IN THE
ADIABATIC REGIME*

J. Wei, S.Y. Lee, and A.G. Ruggiero

Brookhaven National Laboratory
Upton, New York 11973 USA

Abstract

Evolution of longitudinal equitibrium distribution of a hadron
bunch under the beam-environment interaction is investigated
based on a self-consistent solution of the Vlasov equation. The
effect of this interaction on the distribution can be characterized
by a dimensionless quantiiy in analogy to the one describing the
microwave-instability critering. In the case that the coupling
impedance (Z/n) is reactive and frequency independent, the
change in the distribution results in a stabilization that keeps
the bunch below the instability threshold; microwave instability
is thus eliminated. Meonte Carlo sitmidation for the microwave
instability agrees with analytic solution of the Vlasov equation,
provided that bunch shape distortion due to the coupling 1s taken
nto account

1. Introduction

It is well kuown that electromagnetic fields (self fields) of
wavelengths much shorter than the bunch length of a hadron
beam, produced by the interaction of the beam with its environ-
ment., may induce microwave iustability. Or the other hand, self
fields of wavelengths comparable to the bunch length mainly dis-
tort bunch shape ! * According to the frequency dependence of
the beam-environment coupling impedance, the bunch-shape dis-
tortion may enhance the Landau damping?, which then stabilizes
the ricrowave instability

This paper is devoted to a detailed examination of a sunple
madel pertaining to the evolution of the longitudinal particle dis-
tribition in the presence of beam self fields. The discussion 1s
restricted fo the adiabatic regime, where the fractianal change n
the distribution is small during the period of synchrotron oscil-
lation. It 1s demonstrated that the eflect of the self fields on the
equilibrinm distribution is characterized by a scaling parameter
D similar to the one describing the microwave-instability crite-
rion. When the coupling changes adiabatically, the distribution
changes in a way to damp coherent instability This damping
mechanism prevents instability if the coupling is reactive and
frequency independent.

2. Evolution under adiabatic potential variation

Longitudinal motion of hadron beam in synchrotrons and
storage rings can be described by two variables, the phase ¢, +¢ of
the rf field at the moment the particle passes the cavity, and W =
AFE [hw,, with the energy deviation AE from the synchronous
value. Consider an Hamiltonian system® with reactive coupling
(Z/r independent of frequency nws),
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where the coupling factor
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Z 1s the longitudinal coupling impedance at frequency nw,, and
Sgn(Z) is equal to 41 if the impedance is capacitive and —1 if
it 1s inductive. The particle density can be expressed in terms of
the normalized distribution function ¥ in phase space as

Ap) =N / I (b, W)dW

In these expressions, V, &, and ¢, are the peak voltage, harmonic
number, and synchronous phase of the tf system, n = 1/':«%—1/'72,
47 is the transition energy, ws, E = Amgc’y, and fc are the
synchronous revolution frequency, energy, and velocity, and ¢
and A are the charge and the atomic number of the particles,
respectively.

In order to obtamn an explicit expression describing the bunch
configuration under the coupling, a process is studied, in which
the strength ez of the coupling is increased adiabatically; tran-
sient effects are thus disregarded. In the absence of the coupling,
a parabolic particle distribution is described by

W2 ¢2
Bo(o,W) = , when Wg+-.-g-$1,
otherwise,
; , ] (2)
where 2nJy = #Wyeg is the bunch area, ¢y and Wy are respec-

tively the phase and energy spread,
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and the subscript 0 labels the absence of the coupling. Each of

the N particles in the bunch performs synchrotron oscillation on

the elliptic contonr

w'2 4)2
£i=a‘705+»—5, 06 <L (3)

i =1,---,N  When the coupling is adiabatically turned on,
these contours are deformed such that the phase-space area

%W’d(ﬁ:{‘ 2rdy, =1, N, (4)
C

with the integral being taken over the path of one synchrotron
oscillation, is an adiabatic invariant. Define a quantity ¢ such
that these deformed contours are described by

LW P - |
&= C2{W02 + &(2) <£>(2, [’\(4’) ’\(0)]}» 0<& <1, (5)

i = 1,---,N. Liouville’s theorem implies that the density in
phase space, at the location that each particle occupies, remains
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constant under the deformation. The equilibrium distribution
thus becomes

3 1 (w2 Ag?
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0 otherwise,

| (6)
where A¢? = A(0) ~ A(¢), and the superscript (0) indicates
the equilibrium state. Integration of Eq. (6) over W yields the
density distribution A (¢) in phase, as
N -1

2 < ,\0 EZ'\(]
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with Ao = 3N/4dp the peak density. With Egs. (4) and (5), ¢

satisfies
Ao 3 4 .
C2 l——?—-:l, or 1 —ezd=1¢(" B
PG z (8)

It is shown in figure 1 that with this simple model, ¢ depends

on the dimeusionless quantity, Dy = ‘-3-2—"- anly. If Dy = 0, theu
0

(=1

Figure 1: ( as a function of Dg = 2l

It is seen from Eqs. (6), (7), and (8) that the deformed

equilibrium distribution

3 w?2 @2 h W ¢z )
¥ (W)= ¢ 4nJy B —V;;_ E when W2 + P '

otherwise,
remains parabolic, except that its phase and energy spread follow
the adiabatic change of the coupling, as

¢ = %d;o, and W = (W, (9)

The dimensionless quantity Dg given by Eq. (8) essentially
describes the strength of the coupling. It can be rewritten in a
more familiar form,

_ 480 |Z/n] Sgn(2)

(10)
2B (¢0/V2)"

where £ is the fractional energy spread, and Io = 37h f/?(f)g and
I = Ngew,/2n are the peak and the average current, respec-
tively. Define D as a dimensionless quantity which describes the
instantaneous bunch configuration under the coupling,

_ 12/l Sgn(2)

D &
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(11)

It is a monotonic function of Do and is similar to Dy in its
form. However, [ = 3xhl/26 and ¢ are instantaneous values
instead of the un-perturbed values. The evolution of the bunch
configuration under the adiabatic change of the coupling may be
described with Eqs. (7), (8), and (10), as

. =0, when Dg = 0:
D=1~= -1, when Dg — +0o¢; (12)
6 — 00, when Dy — -

3. Condition for microwave instability

The condition for microwave instability of a bunched beam
with parabolic distribution (Eq. (2)) can be investigated® using
the Vlasov equation and the perturbation method  Assuming
that collision and diffusion processes can be neglected, W satisfies

oy . oY W ay 12
ot +¢8¢ (AT (13)

¥ may be considered as a superposition of the equilibrium distri-
bution ¥{® and a density fluctuation ¥V, as
¥ = q,(f}) + \P(”,

\pll) = Cim'f”f] ((D u;) (14)

Correspondingly, the Hamiltoman M may be written as
W W)= MO (6 W W) 4 ) (6 W 9)

It has been shown above that H'Y causes deformation of the
equilibrnum buncl shape. MY on the other hand, may induce
coherent instability.

By using Eq. (14), the Vlasov equation (Fq. (13)) can be
rewritten as a linear equation in ¢ which may be expressed in
a matrix form by defining

pm:// il Wye "Fdsdw
as

+ o0
Pn = Z Tompm, n = all integers (15)
mo: - oQ

Solving Eq. (13) is equivalent to obtaining the eigenvalues of a
matrix T of infinite dimensions, i.e. det(8ppm — Tam) = 0. The
so called fast blow-up regime® is defined as the one in which the
rise time of the instability is short compared with the period of
synchrotron oscillation and long compared with the period of the
disturbing fields. In this regime, Ty, can be simplified as
; m-n .
3ique2w,Zlcfﬂ}l/2 Jo [%F(Tv))'] waw
R AYE hBEQ — mkW

where Z = Z (mw,), Jo is the Bessel function of Oth order,
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and
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is the longitudinal amplitude function®. Instability that most

likely occurs has the largest eigen-frequency. Using the identity”
- (m—-n)
Jo | ——=| = 2hB (W
O R
m-n=—00 !

this eigen-frequency £} is shown to satisfy the dispersion relation

1
o 1 dg(z)
= (U — 1V —_ A
b= {U~ )/_lr—zl dz s,

where {J and V' are both real,

(16)
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and, for the parabolic distribution,
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In the case of the reactive coupling, V = 0, and the condition for
instability to occuris

2|2 /n| Sgn (2 A
qef*Io|Z[n| Sgn )(1_EZ,\) > 1. (17)
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The guantity (1 — €z )\) represents the contribution from the
bunch-shape deformation caused by the coupling. Using Eqgs. (3)
and (9), this condition becomes
D> 1 (18)
On the other hand, it follows from the discussion of the last
sectinn that the bunch adjusts itself under the coupling in such
a way that the Landau damping is enhanced. It follows from
Eq. (12) that
D < 1,

which implies that Eq. (18) can never be satisfied due to this
damping enhancement. The bunch keeps changing its shape
without encountering microwave instability.

4. Discussion

The conclusion of the last section is based on the assumption
that the coupling impedance is reactive and frequency inde-
pendent, and that the particle motion is adiabatic. It is not
necessarily true, for example, for a general broad-band coupling
impedance. Such an impedance does not significantly affect the
equilibrium bunch shape. When the coupling is strong enough
to satisfy the instability condition, the particle motion may in-
deed be coherently unstable. Furthermore, in the case that the
particle motion is non-adiabatic (e.g. when an intense beam
is injected into the machine), both of the microwave instability
and the adjustment of the bunch towards an equilibrium shape
may occur, at the same time, in a period comparable to the
synchrotron-oscillation period.

Under general circumstances, it is not easy to obtain an
explicit and complete description of the evolution of the equi-
librium distribution. An analytic solution is not always obvious
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even if the coupling is assumed to be purely reactive and fre-
quency independent. For example, when the coupling is turned
on adiabatically, an originally un-perturbed Gaussian bunch

W2 ¢2
7Y o e—nm—— o — . ta—
Yo (9, W) = mogow exp ( 20%, 202) ’ 9
will change into a new form, ¥ (¢, W). Following the discussion
above, in contrast to the case of a parabolic distribution, ¢
depends not only on the dimensionless quantity Dy, but also on
the relative location of the contour £ (Eq. (4)). Therefore, ¥ will
not even retain the following Gaussian-like form,

¥ (6, W)= Crexp[-CaH (6, W)],

where C and C3 are both constant. The problem may have to be
solved numerically. This fact cautions that when dealing with the
problem of coherent instability using perturbative methods, the
effect of the coupling on the nominal particle distribution has to
be properly considered; an ideal Gaussian distribution (Eq. (19))
exists only if the coupling is disregarded.

The findings in the last two sections were confirmed by
revolution-by-revolution computer simulation® of a single bunch
of particles in space-charge fields, with the bin length chosen as
the cutoff wavelength and with a total of 7200 macro-particles.
When the coupling is adiabatically turned on, the equilibrium
distribution evolves according to Eqs. (9) and (12), either be-
low or above the transition energy, without encountering mi-
crowave instability. In contrast to the behavior in the adiabatic
regime, the bunch may easily suffer from microwave instabil-
ity when it crosses the transition energy, or if the coupling is
non-adiabatically turned on. The threshold and the growth rate
evaluated from the simulation results agree with the analytic so-
lution (Eqs. (17) and (16)) within the statistical accuracy of the
numerical method.
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