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Abstract 

Evolution oflongltudinal equilibrium dlst,rltwtion ofa hadron 
bllnch under the trt-;lm-ellvlrulllll~llt interaction 1s iuvestlgated 
based on a self-consistent solution of the Vlasov equation. The 
cffrr.t c,f this Intrractlon on the dlstrlhution ran be charscten7ed 

i b;y a ~l~rn~nslonless quantity in analogy to the one descnblng thp 
rr,lrr”MRvC-iIIstat~llity f-ri~crl~II: Ill 1111 ~‘OhP llial Illf~ c-0up1111g 

irr~pe~lnnrr (Z/n) is reactive alld frequency In,iepell,lrnt. tl~r 

rhangr In the dlstr~hubiort results 111 a statllll7atlnn fhal keg,~~ 
t tl.~ ilunch bclnw tte Instability t hrrshol~l. microwave instsbllity 
pi thus f,liniInat~~l hltxritc p;,rlr~ sirrliilstiorl frlr the nlIrrownv~ 
Instahlllty agrees with analytic sulutlon of the Vlnsov equation. 
prov~~lcd that bunch shapr dlstortion due to the couph~lg 1s take/i 
Irl( (1 a~~c~lurlt 

2 IS the longitudinal coupling impedance at frequency rwj,, and 
Sgn (Z) is equal to $1 if the impedance IS capacitive and -1 if 
It. 1s inductive The particle density can be expressed in terms of 
the normalized distribution function 3 in phase space as 

1. Introduction 

It I:, v~r.11 !~IJI~KII tlial tlrctr~~maglirtir fields (self fields) of 
wavrlPngtlrs mlrrh shorter than the hunch length of a hadron 
beam; produced t>y the lntrrartmr of the br,arn with it.s envlron- 
merit,. may Induce m1rrowavr Instability Or, the other hand, self 
firlcis “f wavelengths comparable to the bunch length mainly dls- 
tort tlunc-II shapr ’ ’ Arci,rcllng t.o the frequency ~dcpendence of 
the beam-environment roupllng impedanw, the bunch-shape dis- 

tort,lon may enhance the Landau damping’, wh~clr thc,n stat~1lwf~s 
thr, rrlwr~~waw lnstahility 

‘I 111s paper ib dewlr~l 10 a <irtailwJ t*xailiiuatwn d a s111lp11, 
III~I~ICI prlalning to the evoJutlo11 of thrd IL~ng~tudirlal part.l(.lc rlis- 
trlblltloll in Ihe prwpnce of beam self fields Tt~e discussion 1s 
r~,tr~i.~c~i to tll+. :,~lI:~t~:~ti~- rf grlrlrz, nltrr~ tilt> fractinrjal rhnngrs 11, 
tile dlstrihutlon IS small durmg the pnriod of synchrotron oscll- 
latwn It IS demonstrated that the effect of the self fields on the 
rqulllhrilrm dlstrlhllt.lon is rharacrertzed by a scaling parameter 
1) s~rn~lar to the one drscriblng the rrllrrowave-inst,ability rrlt?- 
rlon When tli+ crlupl~ng changes adlabal ically, the tiistrihlltion 
~hangrs irl a way to damp cohrrent Instability This dampIng 
mechanism prevents Instability if the coupling 1s reactive and 
frequency illclependeut. 

2. Evolution under adiabatic potentird variation 

I,ongitudlnal motion of hadron beam in synchrotrons and 
storage rings can be descrlbpd by two variables, the phase b,++of 
t,he rffield at the moment the particle passes the cavity, and W = 
AEfhU~,, with the energy devlatlon AE from the synchronous 
value. Consider an Hamiltoniau system3 with reactive coupling 
(Z/n independent nf frequency fw,), 

?I= SU,2 _ 
2E;92 

[A($)- WI} ! (1) 

where the coupling factor 

EZ = -2qehzwe lZ/4 Sv (Z) 
vcosr#Q ’ 

* Work performed under the auspices of the LI S Department of Energy 

I (#) = N J q ($6, W) dW 

In these expressions. I’, h: and @, are the peak voltage, harmonic 
number, and synchronous phase of the cf system, 7 = l/y;-l/y’, 
-rr is tI!e transitinn energy, (L’~, E = Amoc’y, and /?c are the 
synchronous revolution frequency, energy, and velocity, and Q 
and il arcs the charge and the atomic number of the particles, 
respectively 

In order to obtain an explicit expressIon describing the bunch 
configuration under the coupling, a process IS studled, in which 
t,he st,rength tz of the couphng is increased adiabatlcally; tran- 
slent effects are thus disregarded. In the absence of the coupling, 
a parabolic particle distribution 1s described by 

otherwise, 

whrro ?‘rr Jo = j-rriO& 1s t IIf‘ bunch arra. &J nnil Fe, are respec- 
tlvt,ly thr l)hase anil Pllergy spread, 

and tile subscript. 0 labels the absence of the coupling Each of 
the N part,lclPs in the hllnch performs synrhrotron osclllatinn on 
the elliptic contollr 

W2 
f, = +2 

@‘Z’ 0 56 5 1, 

, = 1;..,N When the coupling is adlabatlcally turned on, 
these contours are deformed such that the phase-space area 

f 
Wdrji = & bJo, t=l; .,N, (4) 

c 

with the integral being taken over the path of one synchrotmn 
oscillation, is an adiabatic invariant. Define a quantity < such 
that these deformed contours are described by 

1 

{ 

2 

(1 = p 
wz+ c- qA(r$)-x(o)] , 
rii,” ,g (j; 

I 

OlbiL (5) 

i = 1,. ‘, N. Liouville’s theorem implies that the density in 
phase space, at the location that each particle.occupies, remains 
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constant under the deformation. The equilibrium distribution where io 1s the fractional energy spread, and io = 3xhf/?& and 
thus becomes f = Nqew,/2x are the peak and the average current, rrsprc- 

I 

&-\jm, 

tively. Define I) as a dimensionless quantity which describes the 
instantaneous bunch configuration under the coupling, 

e(O) (4, W) = 

when 
w2 r+P tzicp2 
,Lo2+z+x 5 c?; 

D = afP2i IZ/nl Sgn (Z) 

?iTETj (+@ 
(111 

otherwise, It IS a monotonic iunctIon of UO atld IS similar to Do in Its 
(‘1 form However. 

where ~I#J’ = X (0) - X (c#), and the superscript (0) mdicates 
i = Brrhi/2$ and E^ are instantaneous values 

the equilibnum state. Integration of Eq. (6) over IV ylelds the 
instead of the rm-perturbed values. The evolution of the bllnch 

density distribution X (6) in phase, as 
configuration under the adiabatic change of the couplmg may he 
drscrlhed with Eqs (7), (d), and (IO), as 

-1 

A(0)=cio, and x=“o 
tzh 

i 1 
i 

= 

f$;r ’ - -q- 
(7! 

0, 

zkl-4 -1, 

when Uo =O. 

ahPn no 4 +s’. (I’-‘) 
c 

with i, = 3N/4& the peak density. N’ith Eqs (4) and (5), ( 
-+ -‘mu, when U0 -+ -CC 

satisfies 

(2 +!= 

\i 
1, or 1 - tz,i = C4 

3. Condition for microwave instability 

(8) 
0 

The condition for microwave instability of a hunched beam 

It is shown m figure 1 that wttll this siniple model, ( depends 
with parabr,lii. tilistribution (Lq (2)) can be investigatr~l” lising 

on tile dllnenslonles~ quantity, Do z d, only If 1)~ = 0, t11r11 
thr \‘lasov equat~~)[~ and the pr~r.tllrt~ntI(,u rnrthod Assl:mln~ 

4 
th,~t colli<;iiln and diffusion processes c,an be ncglr~cic~l II, sntlsfir5 

C=l alJr ii* 
p9~+"-g=o 

'r 
(13) 

q may be crlnsldrred as a superposltlon of the equdlbr~um dlstrl- 
butlon 8(O) and a density fluctuation ‘I?(‘), as 

qj = q,(O) + *“i, *.!I) = e--‘!!f,f] (4, w, !14) 

c s- 

(‘,,rr~sp,,rlillrigl~, the H:1nlllt,~~nlan 71 may bra wntter~ as 

-FL (a5 IV, t) = 76”) (4, $1. q f 31(‘) (A II’, t : q 

11 has l)rrn sl~own attov Itint. 31’“) .. c .illbrLI drf~.‘rlrlat.lvrl IIf 1.11c 
cyullilhrIlIIlI burli-Ii shpc, ?f”‘, (‘II the 0111f.r hard rtln!; Inrluc? 
Coherent Inslabilit,y 

By usmg Eq 113), the Vlasov /~<-lIIatii~~l iE-rl Cl3)\ can l~f~ 

rewritten as a linear rqilatiorl 111 *!I). whictr may tlc> expressed 1~ 
~3 matrts fili-m tty i!rfilnIrlg 

Figure 1: < as a funrtlon i-if Do Z * 

It is seen from Eqs (6), (7), and (8) that f,he deformrd 
equlltbrium dlstrtbution 

Pm = JJ i, (4. II’) * ‘~“d$dlt., 

+CC 

in = x Tnm~m, 
m=- ~c.2 

n = all integers (15) 

{ f+g 
Solving Eq (13) IS rquivalent trl obtaining t,llr plgenvalurs [-if a 

do) (4, W) = 4xJo 
matrix T of lnfimte dimensions, I e det (6,, - T,,,) = 0. The 
so called fast blow-up regime s is defined as tile unc in rrhrch the 
~1s~ time of the Instability is short, compared with the period of 

remains parabolic, except tlLat its phase and enrrgy spread follv% synchrotron oscillation and long compared with the period of the 

the adiabatic change of the coupling, as disturbing fields. In this regime, T,,,,, can he simplified as 

i = $40. and J+ = CU;” (9) 
T 

3iArq2e2w,Zk$?~2 
nm = 

The dimensionless quantity Do given by Eq (8) essentially dil2 (2J”y 

, Jo [&j+] WdW 

h,9;!2 - mklW ’ 

describes the strength of the coupling It can he rewritten in a 
more familiar form, where 2 = Z (mw,), JO IS the Bessel function of 0th order, 

D 

0 
= qeB2j0 IZl4 Sgn (Z) 

21rErj (io/&f ) 
(lOi BCW)= J&&-T ’ k = -qef;;” (1 -6,x>, 
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and 

IS the longitudinal amplitude function3. Instability that most 
IlkPly occurs has the largest eigen-frequency lJsing the Identity’ 

2 Jo [s] = 2hR(W), 
m-“---m 

this elgen-frequency It IS shown to satisfy the dlsperslon relation 

J 

1 
1 = (U-i\‘) 1 &7(“)& 

_,TFJi--- I (16) 

whPw Ii and I’ are both rral, 

3/? 

1/-11’: 
3iNq2e2hu,ZklBL 

21 = 
h&‘%l 

dT (2J”)3’2 nk, (2Jo)“2 ’ 

and, for the parabollr distribution 

g(x) = z&z Ii-1 5 1 

In the case of the rcactlve couphng, V = 0, and the condltlon for 
Instability to occur is 

q@Q;;;;y-;“’ (1 - q’* >_ 1. (17) 

The quantity (1 - ez 1) 1’4 represents the contribution from the 

bunch-shape deformation caused by the couplmg Using Eqs. (8) 
and (,9). this condition becomes 

D>l (18) 

On the other hand It follows from the dlscussiun of the last 
srcti,,n that the bunch adjusts it,self Ilnder the coupling IKI stlrh 
a way that the Landau dampmg is enhanced It follows from 
Eq (1”) that 

D < 1. 

which implies that Eq (Id) can never be satisfied due to this 
damping enhancement The hunch keeps changing Its shape 
vvlthollt, encountering microwavp inst.ahility. 

4. Discussion 

‘The concluston of the last section is based on the assumption 
that the coupling impedance is reactive and frequency inde- 
pendrnt, and that the particle motion is adiabatic It is not 
necessarily true, for example, for a general broad-band coupling 
Impedance. Slich an Impedance does not significantly affect the 
equilibrium bunch shape. When the roupling is strong enough 
to satisfy the instabihty condition, the particle motion may m- 
deed be coherently unstable. Furthermore, in the case that the 
particle motion is non-adiabatic (e g. when an intense beam 
1s InJe(.ted into the machine), both of the microwave instability 
and the adjustment of the bunch towards an equilibrium shape 
may occur, at the same time, in a period comparable to the 
synchrotron-oscillation period. 

lrnder general circumstances, it is not easy to obtain an 
explicit and complete description of the evolution of the equi- 
librium distribution. An analytic solution is not always obvious 

even if the coupling is assumed to be purely reactive and fre- 
quency independent. For example, when the coupling is turned 
on adiabatically, an originally un-perturbed Gaussian bunch 

@o(A~‘) = l -exp (-?$- 6) I h?,$UW (19) 

will change into a new form, 8 (4, W). Following the discussion 
above, in contrast to the case of a parabolic distribution, c 
depends not only on the dimensionless quantity Do, but also on 
the relative location of the contour <, (Eq (4)). Therefore, rE will 
not even retain the following Gaussian-like form, 

9 (d, W) = CI exp [-C231 (d, W)] , 

where Cl and C; are both constant. The problem may have to be 

solved numerically This fact cautions that when dealing with the 
problem of coherent instability usmg perturbative methods, the 
effect of the coupling on the nominal particle distribution has to 
be properly considered; an ideal Gaussian distribution (Eq (19)) 
exists only if the coupling is disregarded. 

The findings in the last two sections were confirmed by 
revolution-by-revolution computer simulation3 of a single bunch 
of particles in space-charge fields, with the bin length chosen as 
the cutoff wavelength and with a total of 7200 macro-particles. 
When the couphng is adiabatically turned on, the equihbrium 
distribution evolves according to Eqs. (9) and (12), either be- 
low or above the transition energy, without encountering mi- 
crowave instabihty. In contrast to the behavior in the adiabatic 
regime, the bunch may easily suffer from microwave instabil- 
ity when It crosses the transition energy, or if the coupling is 
non-adiabatically turned on. The threshold and the growth rate 
rvalllated from the simulation results agree with the analytic so- 
lution (Eqs (17) and (16)) within the statistical accuracy of the 
numerical method. 
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