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Abstract

We consider synchrobetatron resonances driven by dis-
persion at rf cavity locations. A theory is presented which, be-
sides effects due to nonlinear synchrotron motion also takes
into account both the 1lv, modulation of the transverse tune
due to chromaticity and the 21, modulation due to transverse
space charge (v, is the synchrotron tune). Results of the ana-
Iytical treatment are compared with tracking calculations for
the 3 GeV Booster of the proposed TRIUMF KAON Factory

for cases with and without chromatic tune modulation.
Introduction

Synchro-betatron resonances are important in machines
-such as the Fermilab booster, and the proposed SSC LEB and
TRIUMF KAON rings- where the synchrotron tune is large
compared with the stopband widths of lower order betatron
resonances. Moreover, the betatron tune is modulated by syn-
chirotron motion because of chromatic and space charge effects:
usually, in proton machines, the chromatic and/or space charge
tune shifts are at least comparable with the synchrotron tune.
Under these conditions, it is incorrect to view the betatron
tune as moving around the v,-v, tune diagram as a function
of synchrotron phase. The correct picture is one where all be-
tatron resonances have synchrotron sidebands whose strengths
depend upon the tune modulation and the betatron tune is
taken to be the average over a synchrotron oscillation. Histori-
cally, tune modulation due to chromaticity was first considered
by Orlov(1], and that due to space charge was considered by
Moahl{2].

We consider the particular case where coupling occurs
between the longitudinal and transverse motions because of
rf accelerating cavities located in regions where the dispersion
and/or its derivative is not zero. These drive resonances of the
form

ve+mr,=n (1)

where v, and v, are the betatron and synchrotron tunes, and m
and n are integers of either sign. In general, the strength of the
resonance drops rapidly as the satellite order, |m|, increases.
The integer n corresponds to the placement symmetry of the rf
cavities. Hence, for the proposed KAON factory booster syn-
chrotron, where the cavity placement has a 2-fold symmetry,
synchro-betatron effects are minimized by ensuring that the
integer nearest the horizontal tune is odd. However, even if
placed with a specific symmetry, other harmonics are impor-
tant because the gap voltages of the different cavities cannot
realistically be made to agree to better than a few percent.
Synchro-betatron coupling occurs because of the follow-
ing effect. When a cavity is in a dispersive location, the closed
orbit there moves as a function of energy. Thercfore, as a par-
ticle crosses the gap and receives an energy increment, it is
displaced with respect to the closed orbit. On successive turns.
the betatron phase will change. The linear resonance, [ml =1,
occurs when the betatron phase (modulo 27) changes by the
same amount per turn as the synchrotron phase. Resonances for

|m| > 1 can occur because of non-linear longitudinal motion.
However, for a bunch occupying a conservatively small frac-
tion of the bucket area, the strength of the resonance decreases
dramatically as |m| increases.

Resonances for |m| > 1 can also occur because of be-
tatron tune modulation. For example, chromaticity causes a

tune modulation at the synchrotron frequency and this causes
the linear synchro-betatron resonance to appear at |m| = 2.
Space charge modulates the betatron tune at twice the syn-
chrotron frequency, causing the linear resonance to appear at
|m] = 3. For tune shifts comparable with the synchrotron tune,
this effect is much more important than that due to non-linear
longitudinal motion.

As with z-y coupling resonances, the sign of m determines
whether it is the sum or difference of the relevant actions (I, and
I.) which is conserved. However, in the cases we consider, the
longitudinal action (I, = bunch area in energy-time units /2r)
is so much larger than the transverse action (I, = momentum x
emittance/2) that this dependence upon the sign of m is not
really relevant. Le., a particle can be transversely lost if only
a small fraction of the longitudinal action is transferred to the
transverse action.

In what follows, we re-state the original betatron am-
plitude growth formula of Piwinski and Wrulich/3] and then
generalize it to take into account betatron tune modulation
due to chromaticity and space charge, after the manner of
Suzuki[5]. For the cases with and without chromaticity, we com-
pare the analytical formulae with simulations corresponding to

the TRIUMF KAON factory booster synchrotron.

No Tune Modulation

The synchro-betatron effect is conveniently expressed as
a rate of change of the betatron amplitude (/. 3,){3]:

dv gl 5 -
Weele %ZZmCmAn sin{(ve +mv,—n)0+ . +my,) (2)

do
where 1, and %, are the initial betatron and synchrotron phases.
Cm = —(_m is the m*® Fourier component of Ap/p,
A e . .
2= ¥ sin(m(u8 + ). (3)
mz=1

In this expansion, harmonics higher than m = 1 are included
because the synchrotron motion is in general nonlinear. This
nonlinearity is due to the sinusoidal rf voltage and can also be
caused by collective effects such as longitudinal space charge
forces. A, contains the dispersion at the cavity gaps, multi-
plied by the gap voltage divided by the rf voltage per turn, and
summed with regard to the betatron phase advance between
cavities. The general formula is given by Suzuki[4], but for sim-
plicity we restrict ourselves to the case of a single cavity. Then
A, is independent of n,

A= /D + (D', + Da,)?. (4)
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The lattice functions a,, 3,, the dispersion D and its
derivative D’ are evaluated at the cavity.

For the isolated resonance (1), we can single out one term
of (2) because the others only give rapidly varying contribu-
tions which average to zero. The maximum change in betatron
amplitude per turn is, therefore,

8(/e:B:) = muym(n A = &, (5)

We see that there is a 1-1 correspondence between synchrotron
sidebands and harmonics of the longitudinal motion. In partic-
ular, for the non-accelerating case ¢, = 0, where there are only
odd harmonics, even synchrotron sidebands are not excited.
Also, notice that the same growth rate applies to sidebands of
opposite sign, i.e., 8§, = 6_,,.

Tune Modulation Due to Chromaticity

Chromaticity, & = {(dv/v)/{dp/p). causes modulation of
the betatron tune according to

Ve = Vzo + &etroAp/p. (6)

This, combined with (3), gives the tune as a function of 6.
A Hamiltonian analysis[5] shows that the correct technique of
including the modulation is to replace v.6 by [uv,df in the
formula for the growth rate (2). So the argument of the sine
function in (2) becomes

_ €:v20C)

(veo + myvy — )8 cos(v,0 + ) + 3, + miyy
where we have used only the first harmonic of the chromatic
tune shift. Strictly, the other harmonics should also occur in
this expression, but their effects are only important in cases
where the synchrotron motion is very nonlinear.
Well-known FM theory gives
X0

sinfa + cecosa) = Y sin(a+ (e +7/2))Ji(c) (7)

[=~20
so that (2) becomes a triple sum of

Ezim’(mrA,,Jz(c)x
sin[(vr0 + (m' — Dy, = )8 + b + (m' = Dy, + In /2]

over m', n, and [; all 3 indices going from —oo to +00. We have
replaced m by m’ because we want m to continue to denote
the synchro-betatron sideband. The Bessel function argument
is ¢ = L100(1/Vs = Ave/v,. The isolated resonance (1) is rep-
resented by the terms which satisfy m = m’ — . Using §,, as
defined in {5), the change per turn in betatron amplitude on

resonance 1s
b(VeBr) = Y mprdi(e)sin(sp — Ir/2). (8)
1= 0o

The maximum growth rate can be found by adjusting the phase
1 to the appropriate value. As an example, for ¢, = 0, where
8, = O for even m, the m = £2 case gives

S(VeBr) = (&1 + &)y — (6 +8) 5+ (63 +87) s — -~ (9)

In general, this series is very quickly converging because hoth
8 and Jic) decrease rapidly with order.

Modulation Due to Chromaticity and Space Charge

If we assume a bunch with parabolic line density extend-
ing from rf phase ¢, — ¢ to ¢, + ¢,the space charge tune shift

of a particle with phase ¢ is
¢ - ¢s ) !
- —=— . (10)
( ¢

¢ is given by nhAp/p = dé/db, (n = v~ — 472, h is harmonic
number) so that it can be represented as a cosine series with
MYybm = Nhim, ¢6 = ¢,. We add this contribution to (6) and
integrate over 8 to give as the argument of the sine function in

(2):

Aust - AVsc

(Vz + myy — )8 + b, + mip, +
bsin(2(v,0 + ¥,)) — ccos(v,8 + ¥,),

— 2
where b = %“‘ (%) , and we have dropped harmonics of ¢
higher than ¢,. An important difference compared with the case
of modulation due to chromaticity only is that the particle’s

average tune is a function of synchrotron amplitude:

o 1 2
U= zo+AU5c[1—§(%)J- (11)

Hence, there is a tune spread and so if the space charge tune
shift is larger than the synchrotron tune, then synchrotron side-
bands are impossible to avoid'.

Expanding (2), we get a quadruple sum of

L An Ji(0) Ji(c)
sin[(T7 + (n' = 2k — Dv, —n)f + v, + (m' = 2k — Dy, + 17 /2)

over m’/, n, k, and I. The resonance (1) occurs in terms which
satisfy m = m’ — 2k — [ so the on-resonance growth is

Ve Br) = Z Z b2kt Je (D) (c) sin(r — 17 /2).  (12)

k=—00l=—0c0

Tracking Calculations

The predictions of the theory are compared with tracking
studies using the lattice of the KAON Factory Booster for sta-
tionary tune as well as for tune modulated by chromatic tune
shift. As all cavities in the lattice are at dispersive locations,
dispersion is removed in all but one cavity by means of 1% or-
der matrix elements to produce results that are easily compared
with the theory. In this cavity the relevant lattice parameters
are #, = 10.98m, a, = 1.90, D = 1.66m, D' = -0.55. This
yields, according to (4), A = 3.3m/12 because there are 12
cavities. The total voltage per turn is 600 kV and a stationary
bucket was used throughout, giving a synchrotron tune at zero
amplitude of 0.053. In the no-tune-modulation case, chromatic-
ity in both planes is corrected with two sextupole families.

Particles are tracked for 1000 turns. The horizontal tune
is set to coincide with the synchro-betatron satellite under in-
vestigation and the growth rate of the betatron amplitude is
determined for a particle with a maximum Ap/p of 0.4%. At
this amplitude, the synchrotron tune is v, = 0.041, {, = 0.37%,
and ¢, = 115°. Space charge has so far not been included in

'For an exactly parabolic line density, the tune spread is actually only
from half the tune shift to the full tune shift, but in practice there are always
some particles beyond ¢, + ¢.



the simulations so the only source of nonlinear synchrotron mo-
tion is the nonlinearity of the rf waveform. Standard theory of
pendulum motion gives, (3/¢, = —0.0779 and (s/¢; = 0.0057.
Fourier analysis of the tracking data is used to verify that the
emittance growth observed is indeed due to synchro-betatron

coupling.

Table 1: Growth Per Turn of Betatron Amplitude (mm)

m £=0 £=-14
Simulation Eqn.(5) | Simulation Eqn.(8)
1 145 120 110 104
2 - - .030 .028
3 033 .030 .040 .033
4 - - .004 .009
5 .005 004 .006 .005

The results are summarized in Table 1. For both station-
ary and modulated tune, good agreement between theory and
tracking is generally found. A marginally significant discrep-
ancy is found for the m = 4 case with chromaticity. This could
be due to the neglect of the higher harmonies of the tune mod-
ulation since the first ‘third harmonic’ sideband of the large
linear (m = 1) resonance occurs at m = 4,

The width of the stopband of the synchro-betatron res-
onance (1) can be found by dividing the betatron amplitude
growth per turn by mv/eB;. This is useful for gauging the im-
portance of synchro-betatron effects relative to the usual be-
tatron resonances. For example, for a particle with e 8, =
16mm (typical in the TRIUMF KAON Booster), the m = 5
stopband width is Ae =1 x 107,
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