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Abstract

Based on the kinetyc thecory of the plasma,
we present a treatment of wake field phenomenon.
We develeoped a mathematical model to calculated
the frecuencies 1in  an  inhomogenical hot nlasma
that is interacting with electron beams. We used
different inhomogeneous and temperatures for the
»lasra and electron beams. The system is put in
a strong magnetical field. Finally, we examined
the relationship hetween this effects and the
instability that appears in this cases.

Introduction

There exists at present experimental
evidence of the particles accelerated by the
insertion of a beam into the plasma (Argon Advanced
Accelerator Test Facility [1]). Tn respect there

are mony theorical papers that explain the basic

fundamentals  of this phenomenon [2,3,4], it
considers in general multifluid models for the
nlasma wake field [5,0]. Besides its confined in

wave guides has been studied., We present a theorical

model based on the Vliasov - Poisson equations in
orden to calculate the dispersion relation of a
plasmz  that  interaction with electron beams in
cylindrical wave guides 1in a =strong magnetical

field along the z-axis. We find the electrostatic
wave propagating in this medium. We estimate besides
the termical effect and radial inhomogeneous for

the  plasma:  and  the electron hearms. We do not
considerate the don dynamics, i.e, we deal with
an  electronic  plasma. The method dis based on

cxpansion of radial function of the irhomogencous
problems in terms of the well know of eigenfuctions
fer the homogeneous bhounded plasma.

Plasma wake field thecry

One nmedel of finite system for any radial

density profile is that of multispecies plasma
inmersed in very strong magnetic field, We try
initially the case of two specles: plasma and

electrorn beoms, they are symmetric along the guide
axis. Due to the strong magnetical field we don't
considere the electron transversal movement, that
is, the electron radio larmor is very small. Under
this conditions the axial velocity distributions
functions f(r,8,7,v,t) and the equilib{ium distribu-
tion function may be written as: f (r,v) = g {(r)
FF(?,?,t) where L denotes  the king of particle
iR the plasma. The Vlasov - Poisson equation system
can be written in terms of f{r,f,z,v,t)

¥ (T,1) I (7,0) e 30(T,t) &f
b B . ) —H _
st TV T m %z v O (1
V247t t) = -4nfe n (0) fdvE (T
T LMy vi(x,t) (2)
&(F,t) is the electrostatic potentia],qfO)

the particle density on axis and the sum z
is carried out over al species present in the
system. In order to solve the pass equations systems
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must use a method of small perturbations [7], even
though we suppose that the system is in stationary
state, the distributions function is independent
of z, axially symetric and ¢® (F,t) = O; then we
can write:

£(F,) = g (1) FO(¥) (3

Where g (r) is the radial electron density
profile normaliZzed, Fo(v) is the axial equilibrium
velocity distribution] then we have:

fu(¥,c) = £2(r,v) + f;(?,:,t) P (4)
B(T,t) = 61T, ) + ... (s)

We take first terms only, besides in cylin-
drical coordinates the equations (1) and (2) are:

o, 0 Al i
e T v 9z m, 3z gu(r) v 0 (6)
V2o(r,0,z,t) = -4m Zean(O)Idfo(rﬁhz,v,t) (7)

In order to solve this equations we use
Fourier-Bessel expansions for the radial coordinate,
the Fourier series for the angle 6 and the Fourier
integral for the 2z coordinate. We assume that the
next orthogonal set is complete:

J (P .r)
Yéz)(r,e.z) = 77——{§jf1£——i*— exp {imf+ ikz) (8)
" m+x( ml)
J is the Bessel function, P .a are the

radial waves number that can be determined by P .a
= X where X are the zeros of J (X .) = O.mén
the other hanﬁ, we utilized the Iapalg% transform
for the temporal variable. Finally, we get the
following dispersion relation:

Ka 11’ >
Y;;—I“EE z 1 (ew) CUm - 11 A; &) =0 (9)

Where K is the wave number, a is the radio

wave guide, [ is the unity matrix and Am are the
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eigenvectors that are associated with electrical
field, then:
2 0
w? (0) dv dF’/dv
I (k,w) = “pp
M k v - w/k
(10)
4m%n (0)
w? (0) = —HH
315 m‘J

Fu is the Maxwellian distributions and,

Cll'_ 2
= 2
bma Jm+1 (Xml) Jm+1 (Xml')
(11)
coddrr 3 (P T) J (P L) g, (r)
The coefficient u = 1,2 corresponds to
the plasma and electron beams, g (r) gives the

radial inhomogeneity of the u species. The equation

(9) is solved by using the Serizawa method [8]
that for numerical facilities, in dimensionless
units is:

_ 11’ ., 1’ ,,

I A e S O

2 w2 2 g2 2 g2
X+ K 2Adp I3 2de K
(12)
n
=8y A, (K) =0

the P subindex means plasma and P electron

beams, furthermore:

KBTU
R = Ka ké = T (0)az
W 17pu
- ~2
. P T U S
b = 1 2Xy, B 2, X
DB BT

F is the energy of the beam and 7' is the

derivate of the dispersion function.
Results

The matrix equaticn is solved to find its
eigenvalues (frecuencies) using a numerical routine
developed in the Universidad Nacional de
Colombia-Manizales-which it permits:

1) Evaluate the
density profile g(r).

equation (11) for any

2} Evaluate the dispersion function Z and
their derivates.

3) Calculate the eigenvalues of equation

(12).

In this
evaluate the

paper we just present results to
interaction between two species, but
the result may be generalized for three or more
species which ones can have different density
profiles and temperatures. The figure 1 ilustrate
the result for (E/KT)!/# = 10%, A% = 0.05, 2* = 0,01,
Figure 2 1{lustrate the differences that exists
between passed values and one electron bhecams less
energetical (E/KBT)*2 = 10. The frecuencies have
two parts, w = wr + iwi, the imaginary part is

always negative and gives the landau damping, it
is shawn in the down branches (figures 1,2), they
used density profiles for the plasma and heanm,
respectively the following:
a) g = ——-——l—————f a=3 a=5,2

ep 1 + (ar/a)
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b) g . = 1 Cb = 0.8

eB

1+ (exp (2 (r/b-1)

Conclusicns

Due to the fast convergence of the Bessel
functions, we toke only fifteen terme (it's the
range of the dispersion matrix). The preblem cnuld
be generalized for ary number of species, we could
consider the plasma, clectron beams and a proton
beams. The landau damping depends stronglv on the
density profile, it is small for Ka < | and it
is significant for Ka > 1. The model may be extended
to include finite larmor darius effects and ion
waves.,
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