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NONLINEAR COHERENT BEAM-BEAM OSCILLATIONS
IN THE RIGID BUNCH MODEL

N. Dikansky, D. Pestrikov
Institute of Nuclear Physics, 630090 Novosibirsk, USSR

Abstract. Within the framework of the rigid bunch
model coherent oscillations of strong-strong colliding
bunches are described by equations, which are specific
for the weak-strong beam case. In this report some pre-
dictions of the model for nonlinear coherent beam-beam
oscillations as well as for associated limitations ol the
ring luminosity are discussed.

I. The importance of collective phenomena for the
interaction of colliding beams, especially in strong-
strong case, is well known [1,2]. The treatment of this
problem in the linear approximation on amplitudes of
coherent oscillations can be found anywhere [3].
Though, both experimental results and multiparticle
tracking [4—6] definitely indicate the interest to the
study of nonlinear beam-beam coherent effects. Since
the general solution of this many-fold problem is still
too hard for analytical methods, in this report we shall
briefly discuss the description of the beam-beam cohe-
rent oscillations within the framework of the rigid
bunch model. More detailed calculations can be found
in [7]. Recently (8] this model was used to calculate
nonlinear correction lo the beam-beam coherent tune
shift for the beam parameters diagnostic, based on the
measurement of the beam response spectra. The excita-
tion of nonlinear coherent beam-beam resonances gene-
rally can disturb results of such measurements [7,9].

2. In the rigid bunch model coherent oscillations of
a bunch are described by the displacement ol its distri-
bution function as a whole

Frph=[—(0)y., p—<(pn)) (h
by means ol the following equations
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where F is the total force acting on a particle. Since
(F) generally depends on the higher order momenta of
ftr.p,t) eqs (2) are not closed. For instance, we have
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Nevertheless, if the distribution function has the form of
eq. (1), both of and 0,?, (as well as the higher order
spreads) will be conserved, whereas higher order
momenta of f can be calculated via (z), (p,) and
those constant spreads. Due to the dilution of the distri-
bution (1) in phases of oscillations and subsequent
enlargement of the effective beam emittance the model
gives the adequate description of the bunch coherent
oscillations only during time intervals Al << Aw ™", which
are limited by the frequency spread in the beam Ao or,
probably, the rise time of the instability.

For the sake of simplicity we shall consider cohe-
rent oscillations of two relativistic (y=E/Mc*>1)
bunches, which have densities Np!") and Np'® move in
the same ring and collide at one interaction point (IP).

In the smooth focussing approximation and without the
beam cooling eqs (2) read

) + ol (2 = (OF) M,
Gy A wl () = (8FF"y jyM, (4)

where w,=wov, is the frequency of radial betatron
oscillations, while the average force (8F) distorting
the motion of particles from the counter-moving beam
for the distribution (1) is {7, 8]
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Equations (4), (5) indicate that for beams moving in
the same ring the beam-beam interaction affects only
the relative motion of colliding bunches (n-mode). Such
osciilations are described by the impact parameler b,
which satisfies the following equation
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N=(N+Ng/2.

[t is remarkabie that eq. (6) describing the interaction
of two generally strong-strong colliding bunches has
exactly the same form as the equation of motion of a
particle in the weak-strong beam approximation but
with the special distribution of particles in the strong
beam

peig () = (N2 pV (— &) pP (k) +(1-+2)) /2N . (7)

Hence, all the results of the weak-strong theory can be
applied for the description of coherent oscillations of
strong-strong beams within the framework of the rigid
bunch model. In particular, if p*"? are Gaussian distri-
butions, p.y is also Gaussian and one can get predic-
tions for the strong-strong case using simple scale
transformation of results of weak-strong calculations.
Though, as the model assumes the oscillations statisti-
cally well off-equilibrium, it mainly describes their
dynamic properties.

3. For the illustration let us discuss some properties
of horizontal coherent oscillations of flal colliding
beams
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The unperturbed coherent oscillalions are described by
formulae

be=(2/B)'"*cosy,
bi=db,/d0= —v.(2/) " sin .
P =v,, B=Ro/v:. (9)
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which generate the canonical transformation from vari-
ables b, b} to action-phase variables (J, ¢). Since U in
eq. (6) is a periodic function of ¢, the interaction of
bunches excites nonlinear resonances, if v.=n/m, which
without the beam cooling are described by the fol-
lowing Hamiltonian

—l Y Ug () +(— 1" 2Un (y) cos {me) . m=21,
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Here A=v,—n/m, ¢=14—(n/m)8, y=17,/4e, c°=¢p,
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is the beam-beam parameter for horizontal coherent
oscillations.
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F(a,B.y) is the confluent hypergeometric function. As
h is conserved, specific features of the motion can yield
the enspection of curves A* (/) ==h(f, cos me=+1)
(see Figs 1,2). It indicates the instability of oscillations
with small amplitudes inside the stop bands

w2 v f2 <0, n=1,2. (13)

Figs 1,2 show that the nonlinearity of the interaction
generally saturates this instability only in the region
I >24e. Though, slightly above the stop band (13) the
modulation of amplitudes still remain strong enough
(Fig. 3). In the region A0 oscillations can he cap-
tured into the bucket. 1f the beam is cooled and the
cooling decrement A is less then the frequency of small
coherent phase oscillations in the bucket A& {l,=
==21A] m'%, the oscillations will be dumped lowards
the bottom of the bucket

yerpr= £ AL

For resonances with m>24 (see in Fig. 4) this can take
place if initial amplitudes are large enough (say, after
injection or strong kick). This can limit the luminosity
of a collider by the values

Le==follAlfng) '

for the flat beam &.:» &, and
Le=La |Al/nZ

for round beam and two-dimensional oscillations. In
both cases the saturation of the luminosity will not be
accompanied by the increase of beam sizes.
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