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Abstract The effects of the beam-beam iuteraction on the
coherent motion of the barycentres of the colliding bunches are
considered for asymmetric (two-ring) e*e™ colliders, where cir-
cumference, energy, tune, etc. may be different between two
rings. As well as integer and half-integer resonances, sum reso-
nances occur. These resonances may be quite dense in the tune
diagram, for the cases with different circumferences. This effect
poses a severe restriction on the choice of the circumference ra-
tio. On these resonances, the beams separate spontaneously at
the interaction point. In particular, on the sum resonance, the
barycentres follow a limit cycle in four-dimensional phase space,
rather than reaching a fixed point. This causes a severe drop in
the luminosity. Results of analytical calculations and computer
simulations for the motion of the baryeentres and the excitation
of the resonances are presented.

1 Introduction

In ete™ colliders, the beam-beam iuteraction drives the coher-
ent barycentre motion of the bunches, which is a superposition
of the beam-beam modes. Beam stahility has been studied for
symanetric colliders, where two beams circulate in the same ring
and collide at some interaction points. and where the energies,
tunes, ete. are almost identical to both beams. Recently, asym-
metric colliders with two rings and different energies and possibly
different circumferences were proposed as B-meson factories[1].

2 Beam-Beam Force for Barycentre Motion

We assume that the beams collide at one interaction point (IP).
The relativistic Lorentz factor (4.}, the value of the beta fune-
tions at the IP (iify)‘ the beam sizes at the IP (¢ ) and the
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The barycentres and their slopes of each bunch are denoted by

tunes (¢ ) may be different for ¢* and e~ beams.

fy and Z}, respectively, where : refers to either horizontal (a1
or vertical (y} coordinates, We assume that the density distribu-

tions of both bunches are Gaussian. The kicks on the slopes of

the barycentre become [2]:
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Here X, = \/{o})? + (¢7)?, and », is the classical electron radins.

The force function f can be written with the complex error func-

fion [3]. When the separations ¥4 ~ ¥+ < 0, and §g — fx <€ 5.
T + T Y. Ux [

we can linearize the force f and get:
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where is the effective beam-beam strength parameter
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Note the definition of Z: When the beam sizes of both bunches
are the same, we get = = £/2, where £ is the usual beam-beam

strength parameter.

3 Linear Analysis

We consider a pair of asymmetric rings with circumference ratio
Ky/K.. Without loss of generality, we can assume that I, <
K and that K and I{_ are relatively prime. Iy equally spaced
bunches with Ny particles each cireulate in the ¢* ring. While
an 7 bunch completes . turns in the et ring, the e~ bunch
completes Ny turns in the e~ ring. This period is called ‘super
turn’. At the IP, the et and e bunches are coupled by the
beaw-leam foree,

We describe the linear motion of all bunches by a matrix ¢
of order 20, 4+ K_} [4], and obtain the perturbed tunes of the
system from the Ny + K. independent pairs of eigenvalues of
€. The members of each pair are either complex conjugate or

The s

the eigenvalues becomes greater than unity in absolute value,

real and reciprocal. stem is unstable if at least one of

The eigenvectors are modes of coherent dipole oscillations. We
have determinedd the exact eigenvalues analytically for the case
K, = K_ = 1, and obtained approximate cigenvalues for the
other cases [5]. The precise eigenvalues of €' were computed with
the ABMODE code derived from the BBMODE codel[6..

The beam-beam resonances are shown in Tab. 1. The symbol <
indicates that the instability occurs just below the resonant tune.
The sum resonances are the new feature of asyminetric colliders
with independent tunes. The sum. half-integral and integral tune
resonances are shown in Fig. 1. From synunetry considerations,
it 1s sufficient to show 0 < v, <land 0 < v. <0.5.

Uutil now, we assumed that Ny is cornnen to all e* bunches
in the same ring. In practice, the Ny vary from bunch to bunch
within the same beam. In the extreme case that particles are only
in the first bunches in both beams while the other bunches are
empty, bunch collisions oceur only onee i a saper turn, Tlus
we hiave to replace the tunes vy by the ‘super tunes’ Ryry in

Definition Remark

Resonance

. - T ra
Sun N_vy + KNivo ~integer | Dangerous (dense
+ + 4 g
Integral v, ~ integer Daugerons
<.
tune or ¥_ ~ integer but

Half-integral | v, £ 172 + integer avoidable
23 + i &

tune or v_ ~ 1/2 4 integer (not dense)
Integral K_v, ~ integer Dense
super tune | or Ky ~ integer but
Half-integral + K vy 2 1/2 + integer weak

- S yjoog s
super tune or Iyr_ ~ 1/2 + integer

Table 1: Beam-Beam Resonances
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Figure 1: The largest Z as a function of (vy.wv.) for
(W W) = (2,3). The right axis is 1 — v, while the left one
is _. The platean corresponds to Z > (1.03.

the equations for the integral and half-integral resonances, which
become K times denser than in the equally populated case.

In Fig. 2, we show the half-integral and integral super tune res
onances due to the inequality between hunches for the simplest
nontrivial case. We conclude that {i) the sum resonances and the
resonances at integral and half-integral values of the tune are
driven by the average bunch population, and do not change con-
siderably when the population varies as long as the sum is kept
constant; (1) the resonances at integral and half-integral values
of the super tune are driven by differences in the bunch popula-
tions, and disappear when all bunches have the same population.

4 Spontaneous Separation of Beams

The nonlinear nature of the force becomes important when the
separation is of the order of the rms beam radius. Since the non-
Luear part of the beam-beam force contains terms which conple
horizontal and vertical motion, the fill analysis is complicated.
Tnstead, we study a simpler model. We assume that the heams
are fat £, >> T, that ¥4 = 0 and that § << U;. We can then

approximate the vertical kick by:

Sit e Nzre )(_?;7‘:(;1-{ g T~ Yz (4)
Y = Yi n, \/531

The study of the maps for the barycentre motion involves ap
plying the beam-beam kick and the rotation through the arcs in
Py g
alternation. We have done this both analytically and by com-
puter simnulation.

Additional
seriod-one fixed points appear when the motion becomes lin-
1 I

early unstable at an integral rescnance [5]. The origin becornes

The origin is always a fixed point of the map.

unstable at the same time. The system chooses one or the other
fixed point according to the initial couditions. The condition for
a period-one fixed point is the same as that for linear instability
om an inzegral resonance [5]. The barycentres separate from each

Figure 2: The growth rate in {174, -} space for (., K_)=(1,2)
for Z_=0.03 and Z,=(0.04,0.02}

other spontaneously. Each bunch has a different closed orbit at

the IP.

The next simplest possibility is that the svstem reaches a
period-two fixed point. We find an approximate solution by re
quiring that the period-two fixed points appear in phase space as
if the coordinates change sizn from one turn to the next. A bunch
has two closed orbits at the [P and passes them alternately, The

condition for a period-two fixed point is the smune as the condition

for liear instability on a half-integral resonance [51.

For these two cases, the damping decrement 5, which was in-
cluded in the simulation, is not an important parameter. It affects
how fast the system falls into the fixed points but the resulting
fixed points are not sensitive to d.

Also at the swm resonance, the origin becomes unstable. Nei-
ther period-one nor period-two fixed points can appear, hecanse
they correspond to integral and half-integral reconances, resper
tively. We studied this case by sracking the maps numerically
with a damping deerement & close to zero. The system is either
in a limit cycle or in o multi-period state,

The multi-period behaviour is rather common in nonlinear sys-
If the

system were two-dimensional, the limit cycle would be a well-

rems:  the system is caught Dy a nonlinear resonance.

kuown cousequence[7] when the origin becomes unstable. Since
it 1s four-dimensional, it is remarkable that this lmiting set is a
one-dimensional object in four-dimensional phase space.

This behaviour is quite diffevens from that of the first and sec
ond case, where the equilibrium value of the separation can be
calevlated and is not sensitive to parameters. [ this case, the be-
haviour 1s almost unpredictable, and the motion depends strongly
on the parameters. including & and tunes. The nnlti-period fixed
points also depend on the initial conditions. We summarize the
results based on our model in Table 2.
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Figure 3: Luminosity from multi-particle tracking for
(Wi Ky = (2,3) as a function of xf;f. Parameters:

1=(0.312,0.312), v7=0.268, ==(0.03,0.0

5 Multi-Particle Tracking

The results presented so far depend on linear and/or nonlinear
models, where we ignore the possible change of the beam sizes and
nounlinear horizontal-vertical coupling, We remove these restric-
tions by computer simulation, using the multi-particle tracking
program AB which is an adaptation of the similar program BBI[8].
It tracks many particles in asymimetric colliders. The results for
the huninosity in the case (N, N_) = {2, 3) are shown in Fig. 3.
0.153,0.488,0.821 are the strongest
The half-integral and inte

The sum resonances at v} =

sources of the lummumt\ reduction.
gral resonances in v}, and the fourth-order coupling resonances
between the horizontal and vertical tunes of the et beam are also
observed,

We have also studied the behaviour on the sum resonance by
multi-particle tracking [5]. We find that the motion of the two
butiches is locked onto the sum resonance such that 17 is exactly

+

eaal to 1 — vy, and that it converges towards a limit cycle.

Thus, the qn(\lltdtl\(‘ results obtained in sections 3 and 4 are
Lrtit'nlar, we find that:
. (i) in the cases

runfirmed by multi-particle tracking. In

} the beliaviour listed in Table 2 is confirmerd
1.\'1Th spontaneous separation, the change of the beam sizes are

rather minor so that the assumption used in the model is per-

missible.
[ Resonance | Behaviour Remark ’
} 2/2 period-one fixed point Pitchfork bifurcation
1/2 period-two fixed point | Period doubling
] bifurcation
Sum multi period fixed point | unpredictable
or limit cycle Hopf bifurcation

Table 2: Classification of spontaneous separations and linear in-
stabilities.

6 Discussion

Asvmumetric colliders have the resonance regions in tune space
shown in Tab.1. There, the beams are separated spontaneously.
Among these resonances, the sum resonances are the most dan-
The multi-particle tracking results show that they are
In addition, the
sum resonances are more and more closely spaced in the tune
diagram for colliders with larger and larger /2 + 2. The res-
onances at integral and half-integral tunes are dangerous but not
dense in tune space, and can be avoided. The resonances at inte-
gral and half-integral super tunes are weak, and disappear when
all bunches in the same beam have the same population.

gerous.
the main source of the luminosity reduction.

These resonances, in particular the sum resonances, pose a se-
vere vestriction on the choice of Ky and L_. because enough
space in the tune diagram is needed for the operation of the
rings. Two criteria may be applied, which both yield an upper
limit on Wy: (i) If we require that the instability region, i.e. the
fraction of tune space where the largest absolute eigenvalue A
exceeds unity is not larger than 0.5, we find that for = = 0.03

(K4 K_)={1,1), (1.2} (1.3). {(1.4), {1.5), (1.6), (2.3)

are the only acceptable choices of Iy (i1) In many colliders, the
tunes have to be controlled to better than the synchrotron tune
v, in order to avold difficulties associated with synchro-betatron
resonances. If we require that the sum resonauces do not cause

a further reduction of the tolerance in the tunes, we find

[\+ + <]
The former criterion is usually tighter than the latter.

Fighting coherent bheam-beam resonances with a feed-back sys-
tean is difheult for
large [4]. so that the gain in the feed-back system needed is also

two reasons: (1) The growth rate is relatively

(11) The suw resonance leads to unpredictable motion. [t
the design of the feed-back systems more difficult.
CAL

s of the two rings identical.

large.
will make
These ditfficulties can be best avoided

{1,1).1

by choosing (IV,
e. by making the circumference

o this case, the beam-beam effect couples each bunch in one ring

to only one bunch in the other ring, even if there is a large - but
number of binches in both rings, and there is only one
o

an appropriate choice of the tunes »

equal

$1m resonance, at vy < inte ger, which is casily avoided by
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