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ABSTRACT

Both a linear matrix theory and a Hamiltonian description are
given to deseribe the longitudinal oscillations of electrons in a
Racetrack Nicrotron (RTM). The stable phase domain is de-
termined and an optimuin synchronous phase deduced. This
theory is used as a basis {or more accurate computer calcu-
lations for two RTAM's being built at the Eindhoven Univer
sity of Technology. The asymptotically synchronous phase has
been calculated and the stable phase/energy injection region
determined. The effect of slow deviations in the cavity voltage
amplitude on the area of these stability regions has been in
vestigated, We conclude that deviations of up te 7% have very
little effect on the aceeleration process.

INTRODUCTION

Weset up and compare three methods for examining longitudi-
nal momentum and phase oscillations in a RTM. First, a linear
matrix theory is gi\'t’n {11, Although this theory does yield a
stability domain for the synchronous phase ¢, no expression
for the allowed oscillation amplitudes can e found. Therefore,
secondly. a description using the Hamilton formalisin is given.
This des:

match those from the matrix theory.

ription can be refined such that its results closely
Additionally. a maxi-
mum phase-oscilletion amplitude can be derived. The above
theories assume the relativistic velocity 3 1o be 1, i.e. the elec-
trons travel at the speed of light. Soo thirdly, for examining
the effect of 3 % 1. computer simulations have been carried
through. These have also been used for examining the effect of
slow and small deviations in the cavity voltage amplitude.

MATRIX THEORY

The behaviour of a particle with small deviations of momentum
(607) and phase (&2} with respect to a reference particle of
momentum Py oand synchronous phase g is inspected. The
momentum deviation causes a change of phase deviation due
to the different radins of curvature in the bending magnets
(magnetic field Hg). Since we use 3 = 1, we can neglect the
drift region of the RTM. For the change of phase deviation per
revolution. we obtain
Ar?
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with Agp the RI-cavity wavelength. Likewise, a phase devia-
tion é¢ causes a change of momentum deviation as the particle
is accelerated by a different cavity voltage. For a single accel-
eration (in first order approximation):
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with Voo the cavity voltage amplitude. Eqs. (1) and (2) can be
joined ina single matrix 4, describing the transfer in (8, 6 )

space caused by a single acceleration and a subsequent revolu-
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tion over 2%
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Here, use 1s made of the isochronism condition, wlich can be
written as 2r Ve, cos(pg) = heBoAre, with 2 the path length
difference between successive orbits, expressed in units of Age.

Stability is found for |Tr(A)] < 2, vielding

2
0 < tan(yp) < —. (4)
hm
For h = 1, we ind g max = 32.5% for b = 2 g mae = 17.7°%
The oscillation frequency i, follows from the matrix trace as
well
. ftan(ys )
2eos(2mi) = 2 = 2xhtan(ypy) = v X V —5— (9
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It has been shown by Kapitza [1] that the oscillation amplitudes
are smallest for a matrix trace equal zero, resulting i 2 op =
17.7° at h=1 and g epr = B.0° at h=2. In order to be able 1o
find precise expressions {for the oscillation amplitudes. we now
turn to a Hamiltonian description.

HAMILTONIAN DESCRIPTION

We here give an outline of the Hamiltonian theory. A more
detailed deseription witl be published in the fnrare.

The general expression for the Hamiltonian H describing the
motion of a relativistic particle in a curvi-linear coordinate
frame, neglecting the vertical component. is given by

N 2
H = 4| L3+ B{pe — ) 4 2 ("7'&7”' — ,~\5) . (6)

Here, I is the electron rest mass, p, and Py are the electron
momenturmn in the r-direction (rectangularly to the orbit) and
i the s-direction (along the orbit). The local radius of curva-
tare 1s p and A, and A, represent the time-dependent vector
potential in the transverse and longitudinal directions respec
tivelv.  We want to make a second order expansion of this
Hamiltonian. Since p, is already of first order, and since A,
is of second order in the spatial coordinates (as far the mag-
netic field is concerned), we set A, = 0, also neglecting electric
fringe fields. We split the remaining longitudinal vector po-
tential term in a fast and slowly varving part. ('Urr("apundixm
to the electric and magnetic fields respectively. Then, we can
neglect the change of the slow part with time fm calculating
the electric field in the cavity, i.e.

L, = ';(7))7"15 = ;}%’(*“s{asl + A slow) = “(.(Tf-“s‘fasx (7)
Next, we transform the Hamiltonian to small variables and ex-
pand it up to second degree in the variables. We also introduce
a new time 7, according to 7 = QA with Q) the angular
revolution frequency through the RTM, which decreases at in-
creasing energy Ho01) We also remove first-order terms from
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the Hamiltonian by applving suitable transformations and ob-
tain

o
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Hereo vy is the usual celativistic energy and wiry the angular R
frequency. The quantity Q4 is the radial betatronmnnber, [
is the reference momentum, and the vartables o0 50 pg and Jg
are small. unscaled deviations of position and mamentiunm,

Note how we have split the time: and position dependent part
of the RY electric field. The mtegral over the position depen-
dent part can also be split up in two terms: a reference part.
depending on time only, plus a smali term describing the dif
ference in accelerating voltage felt by a deviating particle. We
neglect the former term as it does not contribute to the equa-

tions of motion. and make a Fourier expansion of the remaining
small part {which is periodic in the scaled time 7). Next, we
average the obtained Hamiltonian over one revolution and we
find that, of the entire Fourier expansion, only one term does
not disappear, viz. the frequency component corresponding to
the RF-frequency,

After all these manipulations. a smoothed Hamiltonian results,
which has, however, still got a coupling term between the » and
s direction. We can remove this coupling by applying a gener-
ating function. Additionally, we scale the variables and finally
obtain a Hamiltonian which is just the s ol two harmonie
oscillators, given by

1’ ey ltanley)
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From this Hamiltontan we can isolate the “longitudinal” part
(also setting Q. == 1). The minus-signs ave irrelevant. merely
deroting a reversed direction of time, and can be forgotien
We also scale our variables such that the y-terms disappear
and obtain (omitting bars for convenience)

; Atan(ys) 2
S

Hs = ipl + {10}

with an oscillation frequency

(11)

which clearly agrees with the result from matrix theory. In
order to be able to get more information from our Hamilta-
nian, we can make two adjustments in the procedure described
above [2]. First, we have replaced the position-dependent ac-
celeration by a smooth one (i.e. at all positions in the orbit).
This can be corrected by including the d-shaped acceleration in
the potential term of the Hamiltonian. Next, we have made a
second-order expansion of the difference in aceelerating voltage
seen by a deviating electron with respect 1o the reference elece
tron. If we include the unapproximated expression for the ac
celerating voltage, we get a non-symmetric and non-harmonic
potential well, from which a maximum oscillation amplitude
can be derived. We discuss both adjustments below.

First, we examine the effect of a &-shaped aceeleration. We do
this by multiplying the potential term in the Hamiltonian by
&(7):

fitan(p,

Hs = %pz + % *4)‘6(r).<2 (12}

[3%)

T
We transform this Hamiltonian to action and angle variables
(J, ) by way of a generating lunction and examine the appro

priate resonance. We also average the Hamitonian over one
revolution and get

p ~ A It -
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Hs = J | = ; o 1'0,\‘(2.’.‘))J .
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As the resonance is excited when the angular part of the Hamil-

(1)

tonian becomes zero (Lo, when the action part goes 1o infin
ity), we can find the maximum value of g by demanding the
accurence of the resonance, vielding

hotan{ g max) ]
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For b =1 we find 95 max = 33.1°, which has to be compared to

the value of 32.5° that resulted from the matrix theory, The
differenceis caused by the averaging procedure above: we have
neglected oscillating terms. 1t is possible to apply a canonical
transformation on the Hamiltonian that transforms these os-
cillating terms to higher order. If this is done. the resonance
turns out to occur at 33.2°, which is evidently nuich closer
to the value obtained by matrix theory. A second canonical
transformation will better the results even more.

A second improvement on the basic Hamiltonian (10) can be
obtained by extending the potential function. For obtaining
the simple harmonic oscillator, we have made a second order
expansion of the cavity voltage sine wave near the syneloonous
phase. Assuming simall radial deviations. we can as vet still re-
place the oscillator by the true potential term. I the potential
obtained this way. a small well is present and thus an expres

sion for the maximuen momentum spread allowed can be fonnd.
Reversing the applied scalings, we find
g Pl &5
o
Ps b ! -
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It has been shown that the Hamiltonian theory is a flexible
maodel. very able to deseribe various aspects of longitudinal
focusing. The model outlined above 3s only a first approach,
vet gives rather good reselts. One should combine the results
of both corrections discussed 1 order o get an wdea of the
major properties of RE focnsing in a RTM.

COMPUTER SIMULATIONS

Computer simulations have been carried out [3], which iuclude
the effect of 3 # 1. The longitudinal motion is described by
two coupled difference equations:

[T = T o)
< r< N (L6
| o= i A mpc 2 : (16)

Here. T;, w2 and p; represent the kinetic energy, particle phase
and hending radius in the {assumed) homogencous dipole miag:

nets respectively, all in the 2the orbit. The quantity L is the
length of the drft region in between the magnets: for a mi

crotron, we set 1= 0. Finally, N denotes the number of turns
from injection 1o extraction

A stable phase/energy domain, the “acceptance” and “emit

tance,” can be calculated, taking into account the so-called
asymptotically synchronous phase pasp, being the synchronous
phase for 3 -+ 1. These caleulations were done for our 5 to 25
MeV /1.3 GHz RTM. Its parameters are given elsewhere in
these proccedings [4]. Figure 1 shows an example of resnlts
for wase = 15°. The central region of the acceptance (left fig

ure) has an encrgy spread of about 4% (200 keV) and a phase
spread of 25° (53 ps).
ing emittance with a linear structure in the central region. The
energy spread of the extracted beam is about 0.99% (230 keV.

The righthand figure shows the match
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Figure 1:

the phase spread 15° (32 ps). Figure 2 shows the avea inside
the separatrix at mjection as a function of zasp. Up to 20°
the area rapidly increases. Between 200 and 25° the graph has
some peculiar peaks, probably arising from the existence of a
lot of “spaghetti™ around the central stable region. i.e. acci-

5o
y

dertally stable points. Irom 25% anwards the area decreases
apain, eventually reaching the zero-line at 33° {not shown).

An important assumption contained in the preceeding results
is a stable cavity voltage amplitude. In practice, the cavity
voltage will show small and slow changes. The term *slow”
mdicates that the cavity voltage amplitude slhould not signif
icantly change whilst one specific buneh of electrons is being
aceelerated. Tnour RTM. a hunch of electrons stays about 85

ns in the machine. Therefore, the cavity voltage amplitude is
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Figure 2: Separatrix area as a function of synchronous phase.

allowed to swing with a frequeney muach smaller than 10 MITz.
In that case. one can test the effect of such changes by assum
ing a stable cavity voltage amplitude for cach bunch, differing
a {ew percent from the central value.

As an example, figure 3 shows the separatrix area at gasp = 1
as a function of the deviation in cavity voltage amplitude, The
graph clearly shows that a rather sharply bounded region exists

ne

in whiclh the separatrix area remains large, strange peaks onee
more being caused by shaghetti. Vor this region, the deviation
of extraction energy as a function of cavity voltage atuplitude is

shown in figure 4. Tt can be concluded that large deviations of

accelerating amplitude are allowed (T9%). without considerable

change of extraction energy (0.79%). Apparently, the acceler
ation process is very able to self-correct deviations in caviry
voltage amplitude as to stabilise the extraction energy.
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Figure 3: Separatrix area as fnaction of deviations in cavity
voltage amplitude.
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Figure 10 Extraction encray as o function of deviations in can
iy veltage amplitude.

CLUSIONS

Both a matrix- and a Hamiltonian deseription of svochrotron
oscillations in a Racetrack Microtron have been given. Addi
tionally. computer calenlations have been performed
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